Radiopaedia Courses 25% Discount in response to COVID-19 ends on October 31 EXPLORE OUR COURSES

Aortic dissection

Aortic dissection is the most common form of the acute aortic syndromes and a type of arterial dissection. It occurs when blood enters the medial layer of the aortic wall through a tear or penetrating ulcer in the intima and tracks along the media, forming a second blood-filled channel within the wall.

The majority of aortic dissections are seen in elderly hypertensive patients. In a very small minority, an underlying connective tissue disorder may be present. Other conditions or predisposing factors may also be encountered, in which case they will be reflected in the demographics. Examples include 5:

The duration of aortic dissection is arbitrarily categorized into three phases 18,19:

  • acute: within 14 days of first symptom onset
  • subacute: between 14 days to 3 months
  • chronic: more than 3 months from the initial onset of symptoms

Patients are often hypertensive (although they may be normotensive or hypotensive) and present with anterior or posterior chest pain and a tearing sensation in the chest.  There may be a difference in blood pressure between the two arms depending on where the dissection occurs.

Depending on the extent of dissection and occlusion of aortic branches, end-organ ischemia may also be present (seen in up to 27% of cases) 5, including:

  • abdominal organ ischemia
  • limb ischemia
  • ischemic or embolic stroke
  • paraplegia: involvement of the artery of Adamkiewicz

If the aortic dissection involves the aortic root it may result in involvement of the coronary arteries and can present similarly to ST-elevation myocardial infarction on an ECG. However, treating these patients with antiplatelets/anticoagulation could be disastrous in aortic dissection.

Some cases of aortic dissection may result in rupture, causing collapse and often death. Signs of cardiac tamponade (Beck's triad) may also be encountered if rupture occurs into the pericardial space.

There have been efforts to construct a clinical decision rule stratify risk of acute aortic dissection and avoid over-investigation. The aortic dissection detection risk score (ADD-RS) combined with a negative d-dimer test has been demonstrated to be effective in reducing unnecessary exams, however, it has not been widely accepted into clinical practice and requires further validation 13,14.

The normal lumen lined by intima is called the true lumen and the blood-filled channel in the media is called the false lumen. In most cases the vessel wall is abnormal. Causes include:

Imaging is essential in delineating the morphology and extent of the dissection as well as allowing for classification (which dictates management). Two classification systems are in common usage, both of which divide dissections according to the involvement of the ascending aorta:

  1. Stanford classification
  2. DeBakey classification

In recent years, the Stanford classification has gained favor with cardiothoracic surgeons. Approximately 60% of dissections involve the ascending aorta (Stanford A or DeBakey I and II) 5.

Aortic dissection is may sometimes be classified as communicating versus non-communicating 16,17.

A new classification system was proposed which is referred with the acronym DISSECT (duration, intimal tear, size of the dissected aorta, the segmental extent of involvement, clinical complications, and thrombosis of the false lumen) 18.

Chest radiography may be normal or demonstrate a number of suggestive findings, including:

  • widened mediastinum: > 8.0-8.8 cm at the level of the aortic knob on portable anteroposterior chest radiographs 9,10, although this upper limit of normal varies (may be significantly larger) depending on projection, FFD and x-ray cassette positioning 15
  • double aortic contour
  • irregular aortic contour
  • inward displacement of atherosclerotic calcification (>1 cm from the aortic margin) 9,11

Depending on etiology, there may be signs of periaortic or mediastinal hematoma which include:

  • obscuration of the aortic knob
  • opacification of the AP window
  • deviation of mediastinal structures
    • esophagus or NGT to the right
    • trachea to the right
    • left main bronchus inferiorly (decreased angle from the horizontal)
  • increased thickness of the left and/or right paratracheal stripe
  • apical capping, particularly on the left

CT, especially with arterial contrast enhancement (CTA) is the investigation of choice, able not only to diagnose and classify the dissection but also to evaluate for distal complications. It has reported sensitivity and specificity of nearly 100% 3,5.

Non-contrast CT may demonstrate only subtle findings; however, a high-density mural hematoma is often visible. Displacement of atherosclerotic calcification into the lumen is also a frequently identified finding.

Dissections involving the aortic root should ideally be assessed with ECG-gated CTA which nearly totally eliminates pulsation artefact. Pulsation artefact can mimic dissection, is very common and seen in up to 92% of non-gated CTA studies 8.

Contrast-enhanced CT (preferably CTA) gives excellent detail. Findings include 1-3,5:

The CTA-report should include at least:

  • proximal and distal extent of dissection
  • location of the intimal tear
  • aortic size
  • involvement and supply (from true or false lumen) of aortic branches
  • signs of organ ischemia or vessel occlusion

An essential part of the assessment of aortic dissection is identifying the true lumen, as the placement of an endoluminal stent-graft in the false lumen can have dire consequences. Distinguishing between the two is often straightforward, but in some instances, no clear continuation of one lumen with normal artery can be identified. In such instances, a number of features are helpful 3:

  • true lumen
    • often compressed by the false lumen and the smaller of the two
    • outer wall calcifications (helpful in acute dissections)
    • origin of the celiac trunk, SMA and right renal artery usually arise  from the true lumen
  • false lumen
    • often larger lumen size due to higher false luminal pressures 
    • at risk for rupture due to reduced elastic recoil and dilation
    • beak sign
    • cobweb sign (as slender linear areas of low attenuation specific to the false lumen due to residual ribbons of media that have incompletely sheared away during the dissection process) 3
    • often of lower contrast density due to delayed opacification
    • maybe thrombosed and seen as mural low density only (more common in chronic dissections)
    • the left renal artery usually arises from the false lumen
    • surrounds true lumen in Stanford type A 

Chronic dissection flaps are often thicker and straighter than those seen in acute dissections 3.

Transesophageal echocardiography (TOE) has very high sensitivity and specificity for assessment of acute aortic dissection, but due to limited access and its invasive nature, it has largely been replaced by CTA (or MRA in some instances) 5.

Although in general MRA has been reserved for follow-up examinations, rapid non-contrast imaging techniques (e.g. true FISP) may see MRI having a larger role to play in the acute diagnosis, particularly in patients with impaired renal function 4. It has similar sensitivity and specificity to CTA and TOE 5 but suffers from limited availability and the difficulties inherent in performing MRI on acutely unwell patients.

Conventional digital subtraction angiography has historically been the gold standard investigation. CTA has now replaced it as the first-line investigation, not only due to it being non-invasive but also on account of better delineation of the poorly opacifying false lumen, intramural hematoma and end-organ ischemia. 

Angiography still is required for endoluminal repair.

Risks of angiography include general risks of angiography plus the risk of catheterizing the false lumen and causing aortic rupture.

  • aggressive blood pressure control with beta-blockers as they reduce both blood pressure and also heart rate hence reduce extra pressure on the aortic wall
  • immediate surgical repair (for type A dissection or complicated type B dissection)

Complications of all types of aortic dissection include:

  • dissection and occlusion of branch vessels
    • abdominal organ ischemia
    • limb ischemia
    • ischemic stroke
    • paraplegia: involvement of artery of Adamkiewicz
  • distal thromboembolism
  • aneurysmal dilatation: this is an indication for endovascular or surgical intervention 6
  • aortic rupture

A Stanford type A dissection may also result in:

Although the combination of blood pressure control and surgical intervention has significantly lowered in-hospital mortality, it remains significant, at 10-35%. Over the 10 years following diagnosis another 15-30% of patients require surgery for life-threatening complications 5.

The differential on chest x-ray is that of a dilated thoracic aorta.

On CT, a number of entities that can mimic a dissection should be considered 5:

Clinically, a number of causes of acute chest pain are often considered:

Article information

rID: 918
Synonyms or Alternate Spellings:
  • Dissection of the thoracic aorta
  • Dissection of the aorta
  • Dissection of aorta

ADVERTISEMENT: Supporters see fewers/no ads

Cases and figures

  • Figure 1: diagram of pathogenesis
    Drag here to reorder.
  • Case 1: Stanford type A
    Drag here to reorder.
  • Figure 2: De Bakey Type I / Stanford A
    Drag here to reorder.
  • Case 2: Stanford type B
    Drag here to reorder.
  • Figure 3: De Bakey Type II / Stanford A
    Drag here to reorder.
  • Case 3: Stanford type B
    Drag here to reorder.
  • Figure 4: De Bakey Type III / Stanford B
    Drag here to reorder.
  • Case 4: on CTPA study
    Drag here to reorder.
  • Case 5: Stanford type B
    Drag here to reorder.
  •  Three-channel ao...
    Case 6: showing a three-channel aorta
    Drag here to reorder.
  • Case 7: Stanford type A with rupture into pericardium
    Drag here to reorder.
  • Infrarenal dissec...
    Case 8: dissection confined to the infrarenal aorta
    Drag here to reorder.
  • Case 9: Stanford type A / Debakey type I
    Drag here to reorder.
  • Case 10: Stanford type B dissecting aneurysm
    Drag here to reorder.
  • Case 11: Stanford type A
    Drag here to reorder.
  • Case 12: Stanford type A
    Drag here to reorder.
  • Case 13: Stanford type A
    Drag here to reorder.
  • Case 14: Stanford type A
    Drag here to reorder.
  • Case 15: Stanford type A
    Drag here to reorder.
  • Case 16: Stanford type A
    Drag here to reorder.
  • Case 17
    Drag here to reorder.
  • Case 18: Stanford type A
    Drag here to reorder.
  • Case 19: Stanford type B
    Drag here to reorder.
  • Case 20: treated with a aortic stent
    Drag here to reorder.
  • Case 21: with dissecting aneurysm
    Drag here to reorder.
  • Case 22: Stanford type A : background Marfan syndrome
    Drag here to reorder.
  • Case 23: with spinal cord ischemia
    Drag here to reorder.
  • Case 24: seen on MRI
    Drag here to reorder.
  • Case 25: ruptured Stanford type A aortic dissection
    Drag here to reorder.
  • Case 26
    Drag here to reorder.
  • Case 27
    Drag here to reorder.
  • Case 28: on CTPA
    Drag here to reorder.
  • Case 29
    Drag here to reorder.
  • Case 30: stanford type A
    Drag here to reorder.
  • Updating… Please wait.

     Unable to process the form. Check for errors and try again.

     Thank you for updating your details.