T2 mapping - myocardium

Changed by Joachim Feger, 20 Nov 2021

Updates to Article Attributes

Body was changed:

T2 mapping is a magnetic resonance imaging techniqueused to calculate the T2 times of a certain tissue and display them voxel-vice on a parametric map. It has been used for tissue characterization of the myocardium 1-5 and has been investigated for cartilage 6,7 and other tissues 4.

The T2 time, also referred to as the spin-spin or transverse relaxation, is a time constant for the decay of transverse magnetization 1-3 and is tissue-specific regarding its ability to differentiate normal from abnormal 5,6.

Alterations in the T2 time is not specific for a single disease, but reflect changes in tissue composition and can be used to receive further valuable information about certain disease processes and together with other parameters or in the context of a certain clinical scenario 1. This can help in the diagnosis of a disease or the assessment of disease activity 1 or its repair 6.

T2 values reflect water content in the respective tissue4 and within the myocardium T2 maps are mainly used for the evaluation of myocardial oedema in the context of myocardial inflammation or myocardial infarction, but also in other pathologies 1,4.

Methodology

T2 mapping has been conducted with T2 turbo spin multi-echo (T2-TSE) 2,5, T2 prepared steady-state free precession (T2p-SSFP) 2,5,8,9, as well as T2 gradient spin echo mapping sequences (T2-GraSE) 10,11.  No matter which acquisition technique is used a series of co-registered images is acquired with different T2 echo times 1-4,6-8.

T2 values can then be computed pixel-wise from a signal intensity versus echo time curve fitting model 1-3,12. The variation of other weight factors, e.g. T1 off-resonance, needs to be corrected if not negligibly small, and displacement between the images of the series should be avoided to get accurate values 1,12.

The respective voxels can then be quantified and evaluated based on normal reference values in diffuse disease. In focal disease, the voxels can be compared to the spared healthy myocardium.

Advantages vs other T2w images

T2-mapping offers potential for more objective detection and quantification of myocardial oedema than standard black-blood T2W and STIR images, which are often of limited value due to susceptibility or slow-motion artefacts and have limited value for quantitative evaluation 1,2,9.

Interpretation

T2 time is related to the water content of the respective tissue, hence the myocardium and thus prolonged T2 reflects myocardial oedema 1-4,9.

Myocardial T2 tends to decrease at higher magnetic field strength 13.

Clinical applications

T2-mapping can detect and assess myocardial oedema in a variety of cardiac pathologies including 1-5,8,10,15-17:

In addition, it is of some use in the following pathologies due to low values 1,3:

Normal values

Normal values of T2 times differ depending on magnetic field strength (1,5 and 3 Tesla), acquisition sequence (T2-SSFP, GraSE). Because of variations between scanners the primary use of a local reference range is recommended 1,4 and if a local reference range is not available quantitative results should not be clinically reported 1,4.

See also

  • -<p><strong>T2 mapping </strong>is a magnetic resonance imaging technique<strong> </strong>used to calculate the T2 times of a certain tissue and display them voxel-vice on a parametric map. It has been used for <a href="/articles/cardiac-tissue-characterization">tissue characterization of the myocardium</a> <sup>1-5 </sup>and has been investigated for <a title="Cartilage" href="/articles/cartilage">cartilage</a> <sup>6,7</sup> and other tissues <sup>4</sup>.</p><p>The <a href="/articles/t2-relaxation">T2 time</a>, also referred to as the spin-spin or transverse relaxation, is a time constant for the decay of transverse magnetization <sup>1-3</sup> and is tissue-specific regarding its ability to differentiate normal from abnormal <sup>5,6</sup>.</p><p>Alterations in the T2 time is not specific for a single disease, but reflect changes in tissue composition and can be used to receive further valuable information about certain disease processes and together with other parameters or in the context of a certain clinical scenario <sup>1</sup>. This can help in the diagnosis of a disease or the assessment of disease activity <sup>1</sup> or its repair <sup>6</sup>.</p><p>T2 values reflect water content in the respective tissue<sup>4 </sup>and within the myocardium T2 maps are mainly used for the evaluation of <a href="/articles/myocardial-oedema">myocardial oedema</a> in the context of <a href="/articles/myocarditis">myocardial inflammation</a> or <a href="/articles/myocardial-infarction">myocardial infarction</a>, but also in other pathologies <sup>1,4</sup>.</p><h4>Methodology</h4><p>T2 mapping has been conducted with T2 turbo spin multi-echo (T2-TSE) <sup>2,5</sup>, T2 prepared <a href="/articles/steady-state-free-precession-mri-2">steady-state free precession</a> (T2p-SSFP) <sup>2,5,8,9</sup>, as well as T2 gradient spin echo mapping sequences (T2-GraSE) <sup>10,11</sup>.  No matter which acquisition technique is used a series of co-registered images is acquired with different T2 echo times <sup>1-4,6-8</sup>.</p><p><a href="/articles/t2-weighted-image">T2</a> values can then be computed pixel-wise from a signal intensity versus echo time curve fitting model <sup>1-3,12</sup>. The variation of other weight factors, e.g. T1 off-resonance, needs to be corrected if not negligibly small, and displacement between the images of the series should be avoided to get accurate values <sup>1,12</sup>.</p><p>The respective voxels can then be quantified and evaluated based on normal reference values in diffuse disease. In focal disease, the voxels can be compared to the spared healthy myocardium.</p><h6>Advantages vs other T2w images</h6><p>T2-mapping offers potential for more objective detection and quantification of myocardial oedema than standard black-blood <a href="/articles/t2-weighted-image">T2W</a> and <a href="/articles/short-tau-inversion-recovery">STIR</a> images, which are often of limited value due to susceptibility or slow-motion artefacts and have limited value for quantitative evaluation <sup>1,2,9</sup>.</p><h4>Interpretation</h4><p>T2 time is related to the water content of the respective tissue, hence the myocardium and thus prolonged T2 reflects <a href="/articles/myocardial-oedema">myocardial oedema</a> <sup>1-4,9</sup>.</p><p>Myocardial T2 tends to decrease at higher magnetic field strength <sup>13</sup>.</p><h5>Clinical applications</h5><p>T2-mapping can detect and assess myocardial oedema in a variety of cardiac pathologies including <sup>1-5,8,10,15-17</sup>:</p><ul>
  • +<p><strong>T2 mapping </strong>is a magnetic resonance imaging technique<strong> </strong>used to calculate the T2 times of a certain tissue and display them voxel-vice on a parametric map. It has been used for <a href="/articles/cardiac-tissue-characterization">tissue characterization of the myocardium</a> <sup>1-5 </sup>and has been investigated for <a href="/articles/cartilage">cartilage</a> <sup>6,7</sup> and other tissues <sup>4</sup>.</p><p>The <a href="/articles/t2-relaxation">T2 time</a>, also referred to as the spin-spin or transverse relaxation, is a time constant for the decay of transverse magnetization <sup>1-3</sup> and is tissue-specific regarding its ability to differentiate normal from abnormal <sup>5,6</sup>.</p><p>Alterations in the T2 time is not specific for a single disease, but reflect changes in tissue composition and can be used to receive further valuable information about certain disease processes and together with other parameters or in the context of a certain clinical scenario <sup>1</sup>. This can help in the diagnosis of a disease or the assessment of disease activity <sup>1</sup> or its repair <sup>6</sup>.</p><p>T2 values reflect water content in the respective tissue<sup>4 </sup>and within the myocardium T2 maps are mainly used for the evaluation of <a href="/articles/myocardial-oedema">myocardial oedema</a> in the context of <a href="/articles/myocarditis">myocardial inflammation</a> or <a href="/articles/myocardial-infarction">myocardial infarction</a>, but also in other pathologies <sup>1,4</sup>.</p><h4>Methodology</h4><p>T2 mapping has been conducted with T2 turbo spin multi-echo (T2-TSE) <sup>2,5</sup>, T2 prepared <a href="/articles/steady-state-free-precession-mri-2">steady-state free precession</a> (T2p-SSFP) <sup>2,5,8,9</sup>, as well as T2 gradient spin echo mapping sequences (T2-GraSE) <sup>10,11</sup>.  No matter which acquisition technique is used a series of co-registered images is acquired with different T2 echo times <sup>1-4,6-8</sup>.</p><p><a href="/articles/t2-weighted-image">T2</a> values can then be computed pixel-wise from a signal intensity versus echo time curve fitting model <sup>1-3,12</sup>. The variation of other weight factors, e.g. T1 off-resonance, needs to be corrected if not negligibly small, and displacement between the images of the series should be avoided to get accurate values <sup>1,12</sup>.</p><p>The respective voxels can then be quantified and evaluated based on normal reference values in diffuse disease. In focal disease, the voxels can be compared to the spared healthy myocardium.</p><h6>Advantages vs other T2w images</h6><p>T2-mapping offers potential for more objective detection and quantification of myocardial oedema than standard black-blood <a href="/articles/t2-weighted-image">T2W</a> and <a href="/articles/short-tau-inversion-recovery">STIR</a> images, which are often of limited value due to susceptibility or slow-motion artefacts and have limited value for quantitative evaluation <sup>1,2,9</sup>.</p><h4>Interpretation</h4><p>T2 time is related to the water content of the respective tissue, hence the myocardium and thus prolonged T2 reflects <a href="/articles/myocardial-oedema">myocardial oedema</a> <sup>1-4,9</sup>.</p><p>Myocardial T2 tends to decrease at higher magnetic field strength <sup>13</sup>.</p><h5>Clinical applications</h5><p>T2-mapping can detect and assess myocardial oedema in a variety of cardiac pathologies including <sup>1-5,8,10,15-17</sup>:</p><ul>

References changed:

  • 1. Messroghli D, Moon J, Ferreira V et al. Clinical Recommendations for Cardiovascular Magnetic Resonance Mapping of T1, T2, T2* and Extracellular Volume: A Consensus Statement by the Society for Cardiovascular Magnetic Resonance (SCMR) Endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):75. <a href="https://doi.org/10.1186/s12968-017-0389-8">doi:10.1186/s12968-017-0389-8</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/28992817">Pubmed</a>
  • 2. Salerno M & Kramer C. Advances in Parametric Mapping With CMR Imaging. JACC Cardiovasc Imaging. 2013;6(7):806-22. <a href="https://doi.org/10.1016/j.jcmg.2013.05.005">doi:10.1016/j.jcmg.2013.05.005</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/23845576">Pubmed</a>
  • 3. Ferreira V, Piechnik S, Robson M, Neubauer S, Karamitsos T. Myocardial Tissue Characterization by Magnetic Resonance Imaging: Novel Applications of T1 and T2 Mapping. J Thorac Imaging. 2014;29(3):147-54. <a href="https://doi.org/10.1097/RTI.0000000000000077">doi:10.1097/RTI.0000000000000077</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/24576837">Pubmed</a>
  • 4. Dekkers I & Lamb H. Clinical Application and Technical considerations of T1 & T2(*) Mapping in Cardiac, Liver, and Renal Imaging. BJR. 2018;91(1092):20170825. <a href="https://doi.org/10.1259/bjr.20170825">doi:10.1259/bjr.20170825</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29975154">Pubmed</a>
  • 5. Kim P, Hong Y, Im D et al. Myocardial T1 and T2 Mapping: Techniques and Clinical Applications. Korean J Radiol. 2017;18(1):113. <a href="https://doi.org/10.3348/kjr.2017.18.1.113">doi:10.3348/kjr.2017.18.1.113</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/28096723">Pubmed</a>
  • 6. Nieminen M, Nissi M, Mattila L, Kiviranta I. Evaluation of Chondral Repair Using Quantitative MRI. J Magn Reson Imaging. 2012;36(6):1287-99. <a href="https://doi.org/10.1002/jmri.23644">doi:10.1002/jmri.23644</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/23165732">Pubmed</a>
  • 7. Guermazi A, Alizai H, Crema M, Trattnig S, Regatte R, Roemer F. Compositional MRI Techniques for Evaluation of Cartilage Degeneration in Osteoarthritis. Osteoarthritis Cartilage. 2015;23(10):1639-53. <a href="https://doi.org/10.1016/j.joca.2015.05.026">doi:10.1016/j.joca.2015.05.026</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/26050864">Pubmed</a>
  • 9. Huang T, Liu Y, Stemmer A, Poncelet B. T2 Measurement of the Human Myocardium Using AT2-Prepared Transient-State TrueFISP Sequence. Magn Reson Med. 2007;57(5):960-6. <a href="https://doi.org/10.1002/mrm.21208">doi:10.1002/mrm.21208</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/17457877">Pubmed</a>
  • 8. Giri S, Chung Y, Merchant A et al. T2 Quantification for Improved Detection of Myocardial Edema. J Cardiovasc Magn Reson. 2009;11(1):56. <a href="https://doi.org/10.1186/1532-429X-11-56">doi:10.1186/1532-429X-11-56</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20042111">Pubmed</a>
  • 10. Sprinkart A, Luetkens J, Träber F et al. Gradient Spin Echo (GraSE) Imaging for Fast Myocardial T2 Mapping. J Cardiovasc Magn Reson. 2015;17(1):12. <a href="https://doi.org/10.1186/s12968-015-0127-z">doi:10.1186/s12968-015-0127-z</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/25885268">Pubmed</a>
  • 11. Baeßler B, Schaarschmidt F, Stehning C, Schnackenburg B, Maintz D, Bunck A. Cardiac T2-Mapping Using a Fast Gradient Echo Spin Echo Sequence - First in Vitro and in Vivo Experience. J Cardiovasc Magn Reson. 2015;17(1):67. <a href="https://doi.org/10.1186/s12968-015-0177-2">doi:10.1186/s12968-015-0177-2</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/26231927">Pubmed</a>
  • 12. Akçakaya M, Basha T, Weingärtner S, Roujol S, Berg S, Nezafat R. Improved Quantitative Myocardial T2mapping: Impact of the Fitting Model. Magn Reson Med. 2014;74(1):93-105. <a href="https://doi.org/10.1002/mrm.25377">doi:10.1002/mrm.25377</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/25103908">Pubmed</a>
  • 13. Baeßler B, Schaarschmidt F, Stehning C, Schnackenburg B, Maintz D, Bunck A. A Systematic Evaluation of Three Different Cardiac T2-Mapping Sequences at 1.5 and 3T in Healthy Volunteers. Eur J Radiol. 2015;84(11):2161-70. <a href="https://doi.org/10.1016/j.ejrad.2015.08.002">doi:10.1016/j.ejrad.2015.08.002</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/26276731">Pubmed</a>
  • 14. Verhaert D, Thavendiranathan P, Giri S et al. Direct T2 Quantification of Myocardial Edema in Acute Ischemic Injury. JACC Cardiovasc Imaging. 2011;4(3):269-78. <a href="https://doi.org/10.1016/j.jcmg.2010.09.023">doi:10.1016/j.jcmg.2010.09.023</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/21414575">Pubmed</a>
  • 15. Thavendiranathan P, Walls M, Giri S et al. Improved Detection of Myocardial Involvement in Acute Inflammatory Cardiomyopathies Using T2 Mapping. Circ Cardiovasc Imaging. 2012;5(1):102-10. <a href="https://doi.org/10.1161/CIRCIMAGING.111.967836">doi:10.1161/CIRCIMAGING.111.967836</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/22038988">Pubmed</a>
  • 16. Usman A, Taimen K, Wasielewski M et al. Cardiac Magnetic Resonance T2 Mapping in the Monitoring and Follow-Up of Acute Cardiac Transplant Rejection: A Pilot Study. Circ Cardiovasc Imaging. 2012;5(6):782-90. <a href="https://doi.org/10.1161/CIRCIMAGING.111.971101">doi:10.1161/CIRCIMAGING.111.971101</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/23071145">Pubmed</a>
  • 17. Lota A, Gatehouse P, Mohiaddin R. T2 Mapping and T2* Imaging in Heart Failure. Heart Fail Rev. 2017;22(4):431-40. <a href="https://doi.org/10.1007/s10741-017-9616-5">doi:10.1007/s10741-017-9616-5</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/28497231">Pubmed</a>
  • 18. Kotecha T, Martinez-Naharro A, Treibel T et al. Myocardial Edema and Prognosis In Amyloidosis. J Am Coll Cardiol. 2018;71(25):2919-31. <a href="https://doi.org/10.1016/j.jacc.2018.03.536">doi:10.1016/j.jacc.2018.03.536</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29929616">Pubmed</a>
  • 1. Messroghli D, Moon J, Ferreira V et al. Clinical Recommendations for Cardiovascular Magnetic Resonance Mapping of T1, T2, T2* and Extracellular Volume: A Consensus Statement by the Society for Cardiovascular Magnetic Resonance (SCMR) Endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):1-24. <a href="https://doi.org/10.1186/s12968-017-0389-8">doi:10.1186/s12968-017-0389-8</a>
  • 2. Salerno M & Kramer C. Advances in Parametric Mapping With CMR Imaging. JACC Cardiovasc Imaging. 2013;6(7):806-22. <a href="https://doi.org/10.1016/j.jcmg.2013.05.005">doi:10.1016/j.jcmg.2013.05.005</a>
  • 3. Ferreira V, Piechnik S, Robson M, Neubauer S, Karamitsos T. Myocardial Tissue Characterization by Magnetic Resonance Imaging. J Thorac Imaging. 2014;29(3):147-54. <a href="https://doi.org/10.1097/rti.0000000000000077">doi:10.1097/rti.0000000000000077</a>
  • 4. Dekkers I & Lamb H. Clinical Application and Technical considerations of T1 & T2(*) Mapping in Cardiac, Liver, and Renal Imaging. BJR. 2018;91(1092):20170825. <a href="https://doi.org/10.1259/bjr.20170825">doi:10.1259/bjr.20170825</a>
  • 5. Kim P, Hong Y, Im D et al. Myocardial T1 and T2 Mapping: Techniques and Clinical Applications. Korean J Radiol. 2017;18(1):113. <a href="https://doi.org/10.3348/kjr.2017.18.1.113">doi:10.3348/kjr.2017.18.1.113</a>
  • 6. Nieminen M, Nissi M, Mattila L, Kiviranta I. Evaluation of Chondral Repair Using Quantitative MRI. J Magn Reson Imaging. 2012;36(6):1287-99. <a href="https://doi.org/10.1002/jmri.23644">doi:10.1002/jmri.23644</a>
  • 7. Guermazi A, Alizai H, Crema M, Trattnig S, Regatte R, Roemer F. Compositional MRI Techniques for Evaluation of Cartilage Degeneration in Osteoarthritis. Osteoarthritis Cartilage. 2015;23(10):1639-53. <a href="https://doi.org/10.1016/j.joca.2015.05.026">doi:10.1016/j.joca.2015.05.026</a>
  • 8. Huang T, Liu Y, Stemmer A, Poncelet B. T2 Measurement of the Human Myocardium Using AT2-Prepared Transient-State TrueFISP Sequence. Magn Reson Med. 2007;57(5):960-6. <a href="https://doi.org/10.1002/mrm.21208">doi:10.1002/mrm.21208</a>
  • 9. Giri S, Chung Y, Merchant A et al. T2 Quantification for Improved Detection of Myocardial Edema. J Cardiovasc Magn Reson. 2009;11(1):1-13. <a href="https://doi.org/10.1186/1532-429x-11-56">doi:10.1186/1532-429x-11-56</a>
  • 10. Sprinkart A, Luetkens J, Träber F et al. Gradient Spin Echo (GraSE) Imaging for Fast Myocardial T2 Mapping. J Cardiovasc Magn Reson. 2015;17(1):1-9. <a href="https://doi.org/10.1186/s12968-015-0127-z">doi:10.1186/s12968-015-0127-z</a>
  • 11. Baeßler B, Schaarschmidt F, Stehning C, Schnackenburg B, Maintz D, Bunck A. Cardiac T2-Mapping Using a Fast Gradient Echo Spin Echo Sequence - First in Vitro and in Vivo Experience. J Cardiovasc Magn Reson. 2015;17(1):1-8. <a href="https://doi.org/10.1186/s12968-015-0177-2">doi:10.1186/s12968-015-0177-2</a>
  • 12. Akçakaya M, Basha T, Weingärtner S, Roujol S, Berg S, Nezafat R. Improved Quantitative Myocardial T2mapping: Impact of the Fitting Model. Magn Reson Med. 2014;74(1):93-105. <a href="https://doi.org/10.1002/mrm.25377">doi:10.1002/mrm.25377</a>
  • 13. Baeßler B, Schaarschmidt F, Stehning C, Schnackenburg B, Maintz D, Bunck A. A Systematic Evaluation of Three Different Cardiac T2-Mapping Sequences at 1.5 and 3T in Healthy Volunteers. Eur J Radiol. 2015;84(11):2161-70. <a href="https://doi.org/10.1016/j.ejrad.2015.08.002">doi:10.1016/j.ejrad.2015.08.002</a>
  • 14. Verhaert D, Thavendiranathan P, Giri S et al. Direct T2 Quantification of Myocardial Edema in Acute Ischemic Injury. JACC Cardiovasc Imaging. 2011;4(3):269-78. <a href="https://doi.org/10.1016/j.jcmg.2010.09.023">doi:10.1016/j.jcmg.2010.09.023</a>
  • 15. Thavendiranathan P, Walls M, Giri S et al. Improved Detection of Myocardial Involvement in Acute Inflammatory Cardiomyopathies Using T2 Mapping. Circ: Cardiovascular Imaging. 2012;5(1):102-10. <a href="https://doi.org/10.1161/circimaging.111.967836">doi:10.1161/circimaging.111.967836</a>
  • 16. Usman A, Taimen K, Wasielewski M et al. Cardiac Magnetic Resonance T2 Mapping in the Monitoring and Follow-Up of Acute Cardiac Transplant Rejection. Circ Cardiovasc Imaging. 2012;5(6):782-90. <a href="https://doi.org/10.1161/circimaging.111.971101">doi:10.1161/circimaging.111.971101</a>
  • 17. Lota A, Gatehouse P, Mohiaddin R. T2 Mapping and T2* Imaging in Heart Failure. Heart Fail Rev. 2017;22(4):431-40. <a href="https://doi.org/10.1007/s10741-017-9616-5">doi:10.1007/s10741-017-9616-5</a>
  • 18. Kotecha T, Martinez-Naharro A, Treibel T et al. Myocardial Edema and Prognosis In Amyloidosis. J Am Coll Cardiol. 2018;71(25):2919-31. <a href="https://doi.org/10.1016/j.jacc.2018.03.536">doi:10.1016/j.jacc.2018.03.536</a>

Tags changed:

  • imaging technology
  • figures

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.