Biomolecular radiation damage

Changed by Daniel J Bell, 25 Mar 2018

Updates to Article Attributes

Body was changed:

Biomolecular radiation damage can result when biological tissues are exposed to ionising radiation from direct exposure or via Compton scattering.

Ionisation is known to lead to the production of free radicals; free radicals are uncharged molecules that possess an unpaired valence electron. Consequently, free radicals are quite chemically reactive and can bind efficiently to other molecules' electrons. Free radicals produced via radiation are most commonly seen in water resulting in hydrogen and hydroxyl free radicals. 

In some cases, free radicals binding with other molecules can cause more free radicals that again bind with other molecules. This chain reaction effect can result in significant alterations to organic material. 

If this occurs amidst molecules that are decisive to cellular metabolism, the fundamental function of the cell is at risk. Furthermore, free radicals can affect nucleic acid molecules leading to cell mutation or cell death (cell death is most likely the result of DNA double-strand breaks). 

  • -<p><strong>Biomolecular radiation damage</strong> can result when biological tissues are exposed to ionising radiation from direct exposure or via <a href="/articles/compton-effect">Compton scattering</a>.</p><p>Ionisation is known to lead to the production of free radicals; free radicals are uncharged molecules that possess an unpaired valence electron. Consequently, free radicals are quite chemically reactive and can bind efficiently to other molecules' electrons. Free radicals produced via radiation are most commonly seen in water resulting in hydrogen and hydroxyl free radicals. </p><p>In some cases, free radicals binding with other molecules can cause more free radicals that again bind with other molecules. This chain reaction effect can result in significant alterations to organic material. </p><p>If this occurs amidst molecules that are decisive to cellular metabolism, the fundamental function of the cell is at risk. Furthermore, free radicals can affect nucleic acid molecules leading to cell mutation or cell death (cell death is most likely the result of DNA double-strand breaks). </p>
  • +<p><strong>Biomolecular radiation damage</strong> can result when biological tissues are exposed to <a title="Ionising radiation" href="/articles/ionising-radiation">ionising radiation</a> from direct exposure or via <a href="/articles/compton-effect">Compton scattering</a>.</p><p>Ionisation is known to lead to the production of free radicals; free radicals are uncharged molecules that possess an unpaired valence electron. Consequently, free radicals are quite chemically reactive and can bind efficiently to other molecules' electrons. Free radicals produced via radiation are most commonly seen in water resulting in hydrogen and hydroxyl free radicals. </p><p>In some cases, free radicals binding with other molecules can cause more free radicals that again bind with other molecules. This chain reaction effect can result in significant alterations to organic material. </p><p>If this occurs amidst molecules that are decisive to cellular metabolism, the fundamental function of the cell is at risk. Furthermore, free radicals can affect nucleic acid molecules leading to cell mutation or cell death (cell death is most likely the result of DNA double-strand breaks). </p>

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.