Gunshot injuries

Changed by Henry Knipe, 2 Jul 2014

Updates to Synonym Attributes

Updates to Synonym Attributes

Updates to Synonym Attributes

Updates to Article Attributes

Body was changed:

Gun shot injuries often require imaging assessment, and this evaluation has both clinical relevance (assessment of organ damage, surgical planning and prognostication), and often also forensic implications. 

Pathology

Mechanism of injury

Some understanding of the factors that influence wounding capacity and pattern of injury may help the imaging assessment.  The main contributing factors are the type of firearm, projectile characteristics and the inherent characteristics of the wounded tissues.

Type of firearm  

The type of firearm influences the velocity of the projectile and given that e = m x v2, projectile velocity is a major contributor to the energy imparted to tissues and hence, to wounding capacity.

The most common weapons encountered in a civilian setting are1:

  • rifles: highest velocity injuries (because longer barrel means that the bullet has more time to accelerate)
  • handguns: medium to low velocity injuries
  • shotguns: have a different mechanism of injury all together:altogether
    • whereas a rifle or handgun fires a single bullet with each shot, a shotgun fires a cartridge of pellets, which disperse on leaving the barrel and rapidly decelerate.  
    • this means that at long range, shotgun injuries are often multiple but superficial, and rarely lifethreatening. life threatening
    • however at short range, the combined energy of the pellets can lead to devastating injury, far more severe than from a bullet fired at same range.
Projectile characteristics

These characteristics of bullet behaviour have significant impact on wounding capacity1:

  • deformation 
    • encased (jacketed) bullets used in higher velocity firearms tend to deform (“mushroom”) on impact
    • a deformed bullet decelerates faster, hence increasing local tissue damage
  • tumbling 
    • when a bullet hits its target, it loses its directional stability and is able to rotate around its short axis.  For; for this reason, non-deformed bullets may sometimes be seen pointing towards the entry wound.
  • fragmentation 
    • generally occurs on impact of a nonjacketednon-jacketed or semijacketedsemi-jacketed bullet.  As
    • as well as giving some clue to the bullet type/characteristics, fragmentation often leads to a telltale distribution: of fragments spreading along the bullet course. Fragmentation
    • fragmentation gives important information about the mechanism and direction of injury.

Calibre and weight also have some effect on wounding capacity, though not as much as the above factors.

Tissue characteristics

Bullet injury is more severe in friable organs such as liver and brain due to temporary cavitation at a distance from the bullet path. Both dense (e.g.bone)  and loose tissues (e.g. subcutaneous fat) are more resistant to damage.  BoneBone can significantly alter behaviour of the projectile and its wounding capacity by slowing it down and changing its path.

Radiographic features

Imaging assessment of a gun shot injury includes:

  • identification of wound tracks by the presence of gas, haemorrhage, bone or metal in a linear distribution
    • directionality of fragments and bevelling of bone toward the direction of travel may establish bullet path and help differentiate entry vs exit wound1
  • localisation of projectile, its orientation - orientation (tumbling) and fragments. 
    • final location may be at a distance from the entry wound due to tracking of bullets along soft tissue layers, or deflection by anatomical structures (e.g. bone).  Such - such tracking suggests low velocity injury
    • if a projectile is not identified on available imaging, a search must be made for 
        • an exit wound, or
        • projectile outside the field of view (i.e. may need further imaging).
  • assessment of internal injuries including involvement of critical structures, active haemorrhage, etc
  • consider possibility of embolised fragments/ shot/shot pellets
  • Angiography 

    May be useful for diagnosis, haemostasis and infrequently, the management of embolised fragments.

    MRI

    MRI is not generally necessary (and potentially hazardous) in the evaluation of acute gun shot injuries.  

    MRI has relevance to this topic mostly because in a patient referred for an MR scan, a history of previous gun shot injury raises safety considerations.  TheThe primary consideration relates to the potential for fragment displacement by the magnetic field 7

    Heating of the metallic fragment is also of some concern, but to a lesser extent, and is not considered further in this article.

    Factors that influence the risk of projectile fragment displacement include:

    • ferromagnetic properties of the projectile,
    • size and shape of the fragment,
    • location in the body,
    • duration of implantation and
    • strength of the magnet.

    In general, most bullet fragments that may be encountered in a civilian setting are not ferromagnetic.  ThereThere are however exceptions, including retained shrapnel in war veterans, certain types of shot gun pellets (especially those used for duck hunting in the United States) and some bullet jackets.

    Careful consideration of risk-benefit is therefore recommended in all patients with previous gunshot woundsgun shot injuries, particularly if the fragments are adjacent to or within vital structures 6.  

    • -<p><strong>Gun shot injuries</strong> often require imaging assessment, and this evaluation has both clinical relevance (assessment of organ damage, surgical planning and prognostication), and often also forensic implications. </p><h4>Mechanism of injury</h4><p>Some understanding of the factors that influence wounding capacity and pattern of injury may help the imaging assessment.  The main contributing factors are the type of firearm, projectile characteristics and the inherent characteristics of the wounded tissues.</p><h5>Type of firearm  </h5><p>The type of firearm influences the velocity of the projectile and given that e = m x v<sup>2</sup>, projectile velocity is a major contributor to the energy imparted to tissues and hence, to wounding capacity.</p><p>The most common weapons encountered in a civilian setting are<sup>1</sup>:</p><ul>
    • +<p><strong>Gun shot injuries</strong> often require imaging assessment, and this evaluation has both clinical relevance (assessment of organ damage, surgical planning and prognostication), and often also forensic implications. </p><h4>Pathology</h4><h5>Mechanism of injury</h5><p>Some understanding of the factors that influence wounding capacity and pattern of injury may help the imaging assessment.  The main contributing factors are the type of firearm, projectile characteristics and the inherent characteristics of the wounded tissues.</p><h6>Type of firearm  </h6><p>The type of firearm influences the velocity of the projectile and given that e = m x v<sup>2</sup>, projectile velocity is a major contributor to the energy imparted to tissues and hence, to wounding capacity.</p><p>The most common weapons encountered in a civilian setting are <sup>1</sup>:</p><ul>
    • -<strong>shotguns</strong>: have a different mechanism of injury all together:<ul>
    • -<li>whereas a rifle or handgun fires a single bullet with each shot, a shotgun fires a cartridge of pellets, which disperse on leaving the barrel and rapidly decelerate.  </li>
    • -<li>this means that at long range, shotgun injuries are often multiple but superficial, and rarely lifethreatening. </li>
    • -<li>however at short range, the combined energy of the pellets can lead to devastating injury, far more severe than from a bullet fired at same range.</li>
    • +<strong>shotguns</strong>: have a different mechanism of injury altogether<ul>
    • +<li>whereas a rifle or handgun fires a single bullet with each shot, a shotgun fires a cartridge of pellets, which disperse on leaving the barrel and rapidly decelerate</li>
    • +<li>this means that at long range, shotgun injuries are often multiple but superficial, and rarely life threatening</li>
    • +<li>however at short range, the combined energy of the pellets can lead to devastating injury, far more severe than from a bullet fired at same range</li>
    • -</ul><h5>Projectile characteristics</h5><p>These characteristics of bullet behaviour have significant impact on wounding capacity<sup>1</sup>:</p><ul>
    • +</ul><h6>Projectile characteristics</h6><p>These characteristics of bullet behaviour have significant impact on wounding capacity <sup>1</sup>:</p><ul>
    • -<li>encased (jacketed) bullets used in higher velocity firearms tend to deform (“mushroom”) on impact. </li>
    • -<li>a deformed bullet decelerates faster, hence increasing local tissue damage. </li>
    • +<li>encased (jacketed) bullets used in higher velocity firearms tend to deform (“mushroom”) on impact</li>
    • +<li>a deformed bullet decelerates faster, hence increasing local tissue damage</li>
    • -<strong>tumbling</strong> <ul><li>when a bullet hits its target, it loses its directional stability and is able to rotate around its short axis.  For this reason, non-deformed bullets may sometimes be seen pointing towards the entry wound.</li></ul>
    • +<strong>tumbling</strong> <ul><li>when a bullet hits its target, it loses its directional stability and is able to rotate around its short axis; for this reason, non-deformed bullets may sometimes be seen pointing towards the entry wound</li></ul>
    • -<strong>fragmentation </strong><ul><li>generally occurs on impact of a nonjacketed or semijacketed bullet.  As well as giving some clue to the bullet type/characteristics, fragmentation often leads to a telltale distribution: fragments spreading along the bullet course. Fragmentation gives important information about the mechanism and direction of injury.</li></ul>
    • +<strong>fragmentation </strong><ul>
    • +<li>generally occurs on impact of a non-jacketed or semi-jacketed bullet</li>
    • +<li>as well as giving some clue to the bullet type/characteristics, fragmentation often leads to a telltale distribution of fragments spreading along the bullet course</li>
    • +<li>fragmentation gives important information about the mechanism and direction of injury</li>
    • +</ul>
    • -</ul><p>Calibre and weight also have some effect on wounding capacity, though not as much as the above factors.</p><h5>Tissue characteristics</h5><p>Bullet injury is more severe in friable organs such as liver and brain due to temporary cavitation at a distance from the bullet path. Both dense (e.g.bone)  and loose tissues (e.g. subcutaneous fat) are more resistant to damage.  Bone can significantly alter behaviour of the projectile and its wounding capacity by slowing it down and changing its path.</p><h4>Radiographic features</h4><p>Imaging assessment of a gun shot injury includes:</p><ul>
    • +</ul><p>Calibre and weight also have some effect on wounding capacity, though not as much as the above factors.</p><h6>Tissue characteristics</h6><p>Bullet injury is more severe in friable organs such as <a href="/articles/liver">liver</a> and <a href="/articles/cerebrum">brain</a> due to temporary cavitation at a distance from the bullet path. Both dense (e.g.bone)  and loose tissues (e.g. subcutaneous fat) are more resistant to damage. Bone can significantly alter behaviour of the projectile and its wounding capacity by slowing it down and changing its path.</p><h4>Radiographic features</h4><p>Imaging assessment of a gun shot injury includes:</p><ul>
    • -<strong>identification of wound tracks</strong> by the presence of gas, haemorrhage, bone or metal in a linear distribution<ul><li>directionality of fragments and bevelling of bone toward the direction of travel may establish bullet path and help differentiate entry vs exit wound<sup>1</sup>
    • +<strong>identification of wound tracks</strong> by the presence of gas, haemorrhage, bone or metal in a linear distribution<ul><li>directionality of fragments and bevelling of bone toward the direction of travel may establish bullet path and help differentiate entry vs exit wound <sup>1</sup>
    • -<strong>localisation of projectile</strong>, its orientation (tumbling) and fragments. <ul>
    • -<li>final location may be at a distance from the entry wound due to tracking of bullets along soft tissue layers, or deflection by anatomical structures (e.g. bone).  Such tracking suggests low velocity injury. </li>
    • -<li>if a projectile is not identified on available imaging, a search must be made for <ol>
    • -<li>an exit wound, or</li>
    • -<li>projectile outside the field of view (i.e. may need further imaging).</li>
    • -</ol>
    • +<strong>localisation of projectile</strong> - orientation (tumbling) and fragments <ul>
    • +<li>final location may be at a distance from the entry wound due to tracking of bullets along soft tissue layers, or deflection by anatomical structures (e.g. bone) - such tracking suggests low velocity injury</li>
    • +<li>if a projectile is not identified on available imaging, a search must be made for <ul>
    • +<li>an exit wound</li>
    • +<li>projectile outside the field of view (i.e. may need further imaging)</li>
    • +</ul>
    • -<li>consider possibility of <strong>embolised fragments/ shot pellets</strong>
    • +<li>consider possibility of <strong>embolised fragments/shot pellets</strong>
    • -</ul><h5><strong>Angiography </strong></h5><p>May be useful for diagnosis, haemostasis and infrequently, management of embolised fragments.</p><h5>MRI</h5><p>MRI is not generally necessary (and potentially hazardous) in the evaluation of acute gun shot injuries.  </p><p>MRI has relevance to this topic mostly because in a patient referred for an MR scan, a history of previous gun shot injury raises safety considerations.  The primary consideration relates to the potential for fragment displacement by the magnetic field <sup>7</sup>. </p><p>Heating of the metallic fragment is also of some concern, but to a lesser extent, and is not considered further in this article.</p><p>Factors that influence the risk of projectile fragment displacement include: ferromagnetic properties of the projectile, size and shape of the fragment, location in the body, duration of implantation and strength of the magnet.</p><p>In general, most bullet fragments that may be encountered in a civilian setting are not ferromagnetic.  There are however exceptions, including retained shrapnel in war veterans, certain types of shot gun pellets (especially those used for duck hunting in the United States) and some bullet jackets.</p><p>Careful consideration of risk-benefit is therefore recommended in all patients with previous gunshot wounds, particularly if the fragments are adjacent to or within vital structures <sup>6</sup>.  </p>
    • +</ul><h5><strong>Angiography </strong></h5><p>May be useful for diagnosis, haemostasis and infrequently the management of embolised fragments.</p><h5>MRI</h5><p>MRI is not generally necessary (and potentially hazardous) in the evaluation of acute gun shot injuries.  </p><p>MRI has relevance to this topic mostly because in a patient referred for an MR scan, a history of previous gun shot injury raises safety considerations. The primary consideration relates to the potential for fragment displacement by the magnetic field <sup>7</sup>. </p><p>Heating of the metallic fragment is also of some concern, but to a lesser extent, and is not considered further in this article.</p><p>Factors that influence the risk of projectile fragment displacement include:</p><ul>
    • +<li>ferromagnetic properties of the projectile</li>
    • +<li>size and shape of the fragment</li>
    • +<li>location in the body</li>
    • +<li>duration of implantation</li>
    • +<li>strength of the magnet</li>
    • +</ul><p>In general, most bullet fragments that may be encountered in a civilian setting are not ferromagnetic. There are however exceptions, including retained shrapnel in war veterans, certain types of shot gun pellets (especially those used for duck hunting in the United States) and some bullet jackets.</p><p>Careful consideration of risk-benefit is therefore recommended in all patients with previous gun shot injuries, particularly if the fragments are adjacent to or within vital structures <sup>6</sup>.  </p>

    Tags changed:

    • core condition

    Sections changed:

    • Approach

    ADVERTISEMENT: Supporters see fewer/no ads

    Updating… Please wait.

     Unable to process the form. Check for errors and try again.

     Thank you for updating your details.