Normal pressure hydrocephalus

Changed by Calum Worsley, 28 Oct 2022
Disclosures - updated 12 Apr 2022: Nothing to disclose

Updates to Article Attributes

Body was changed:

Normal-pressure pressure hydrocephalus remains a controversial entity with often ambiguous imaging findings. It is classically characterised by the triad of gait apraxia/ataxia, urinary incontinence, and dementia, although not all patients with the condition have all three 31.

On imaging, it can be characterised both on CT and MRI by enlarged lateral and third ventricles out of proportion to the cortical sulcal enlargement.

This article is focussed on idiopathic cases. For a discussion of secondary causes of communicating hydrocephalus, please refer to the article hydrocephalus.

Terminology

It is important to note that there are many causes of communicating hydrocephalus without elevated opening CSF pressures, such as trauma, prior subarachnoid haemorrhage, and meningitis. This is sometimes confusingly referred to as secondary normal pressure hydrocephalus 3. Most clinicians will assume that one is referring to idiopathic normal pressure hydrocephalus if no qualifier is used.

Epidemiology

The majority of cases are idiopathic. The incidence is much higher in elderly populations. Exact epidemiology is difficult to establish, as the diagnosis is often not made in nursing home patients for the following reasons: 

  • approximately 20% of patients in nursing homes have gait impairment

  • approximately 10% of these patients also have dementia

  • 15% have incontinence 19

A large study in Norway found a striking increase in incidence with increasing age 3:

  • 3.3 per 100,000 for people 50 to 59 years of age

  • 49.3 per 100,000 for people 60 to 69 years of age

  • 181.7 per 100,000 for people 70 to 79 years of age

Clinical presentation

The classical clinical findings of normal pressure hydrocephalus are 1-3:

  • urinary incontinence

  • deterioration in cognition (dementia)

  • gait disturbances

    • a classic neurological sign in NPHnormal pressure hydrocephalus is magnetic gait, where the patients'patient's feet appear to be magnetically attached to the floor

These can be remembered with the unkind mnemonic wet, wacky, and wobbly

As the name suggests, mean CSF opening pressure is within the normal range (<18 cmH2O or 13 mmHg) 3.

Pathology

The underlying cause remains controversial. One theory is that the condition is an obstructive type of communicating hydrocephalus due to reduced CSF resorption. A second theory suggests it results from weakening of the ventricular wall due to periventricular white matter ischaemic damage 3. The periventricular white matter ischaemic change has also been hypothesised to slow the flow of CSF through the extracellular spaces, resulting in a "back-pressure" effect, leading to ventricular enlargement.

Shearing forces are exerted on the periventricular white matter as the ventricles enlarge. As the corticospinal tracts to the legs run medially, these tangential shearing forces cause gait disturbance.

Radiographic features

CT

Although CT is able to visualise the anatomical changes, it is inferior to MRI. 

MRI

MRI is the best modality to image anatomical changes and can further support the diagnosis with CSF flow studies and magnetic resonance spectroscopy.

Morphological changes
  • ventriculomegaly

  • disproportionate changes in subarachnoid spaces

    • dilated Sylvian fissures 2,24,24,25,28

    • tight high convexity (narrow sulci and subarachnoid spaces at the vertex and medial/parafalcine region) 1,24,25,28

    • cingulate sulcus sign: posterior half of cingulate sulcus is narrower than the anterior half 1,,1717

    • focal/isolated dilation of sulci over the medial surface or convexity (sometimes called transport sulci) 1,24,28,29

The combination of ventriculomegaly, Sylvian fissure widening, and crowding at the vertex has been termed disproportionately enlarged subarachnoid space hydrocephalus (DESH), reflecting disproportionality between the superior and inferior CSF spaces 1,23,27. The finding of DESHdisproportionately enlarged subarachnoid space hydrocephalus without neurologic symptoms has been termed asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI (AVIM) 1. It is felt by some authors that AVIM is actually a pre-clinical form of iNPHidiopathic normal pressure hydrocephalus 30

Brain composition changes

Periventricular hypodensity (on CT) or high T2-FLAIR signal (on MRI) is supportive of changes in brain water content seen in NPHnormal pressure hydrocephalus, but these findings can also be seen with microvascular ischaemic changes or demyelination 2,25.

CSF flow changes

Although prominent aqueductal flow void due to increased CSF velocity across the aqueduct is often seen in patients with NPHnormal pressure hydrocephalus - best seen on T2 and PD spin-echo sequences 14 - it is no longer considered a useful sign, as in modern higher field strength MRI machines aqueductal CSF flow void is present in most of the normal subjects. Additionally, it is highly sequence-specific. 

There is, however, a well-established correlation between higher flow velocities and the favourable outcome after ventriculoperitoneal (VP) shunting; hence, quantitative (rather than qualitative) methods have been developed which can be useful not only in patient selection for shunting but also in diagnosis and predicting prognosis 12-15

  • CSF flow studies 3

    • increased aqueductal CSF stroke volume

      • aqueductal CSF stroke volume is the average volume of CSF flowing through the cerebral aqueduct during both systole and diastole

    • increased aqueductal peak velocity

    • various publications have set various normal and abnormal ranges

      • flow rate of >24.5 mL/min 95% specific for NPHnormal pressure hydrocephalus 9,11

      • stroke volume of ≥42 μL shown in one paper to predict a good response to shunting 10, however, a more recent paper has cast serious doubt on the usefulness of aqueduct stroke volume in patient selection for VP shunting 21

      • stroke volume upper limit is now suggested to be variable between institutions due to intrinsic scanner differences; thus each centre should obtain their own "normal values", with the upper limit being suggested as two times the normal value 16

    • studies have shown that aqueductal stroke volume decreases later in the disease process despite clinical progression

      • this has been theorised to be caused by cerebral atrophy, which indicates that the patient is unlikely to respond to shunt surgery 18

MR spectroscopy

MRSMR spectroscopy has not been shown to have any added value for differentiating idiopathic NPHnormal pressure hydrocephalus from other types of dementia, nor does it help in patient selection for VP shunting 22.

Nuclear medicine

Nuclear medicine is less important in diagnosing NPHnormal pressure hydrocephalus. Some of the features described are 13:

  • early detection of the radiotracer into lateral ventricles giving a heart-shaped appearance of lateral ventricles rather than a normal trident pattern

  • persistence of radiopharmaceutical beyond 24-48 hours due to impaired absorption

  • radiotracer does not extend to the superior aspect of convexities of lateral ventricles

  • retrograde CSF flow into lateral ventricles

Treatment and prognosis

Treatment of normal pressure hydrocephalus, once the diagnosis is established, is with CSF shunting, usually a ventriculoperitoneal shunt (VP shunt). The challenge is identifying those patients who will benefit from shunting. Favourable prognostic factors include 3:

  • short duration of presurgical symptoms (less than 6 months)

  • onset of gait disturbance before dementia

  • temporary symptom relief from a CSF tap test (removal of 40 mL of CSF via lumbar puncture)

  • absence of significant cerebral vascular disease

  • presence of an aqueductal flow void on T2 imaging 10,14

History and etymology

It is thought to have been initially described by Colombian neurosurgeon Salomón Hakim and R D Adams in 1965, although it may actually have been described earlier under a different name by McHugh 4,6,7.

Differential diagnosis

The possible imaging differential spectrum includes:

See also

  • -<p><strong>Normal-pressure hydrocephalus</strong> remains a controversial entity with often ambiguous imaging findings. It is classically characterised by the triad of gait apraxia/ataxia, urinary incontinence, and dementia, although not all patients with the condition have all three <sup>31</sup>.</p><p>On imaging, it can be characterised both on CT and MRI by enlarged lateral and third ventricles out of proportion to the cortical sulcal enlargement.</p><p>This article is focussed on idiopathic cases. For a discussion of secondary causes of communicating hydrocephalus, please refer to the article <a href="/articles/hydrocephalus">hydrocephalus</a>.</p><h4>Terminology</h4><p>It is important to note that there are many causes of communicating hydrocephalus without elevated opening <a href="/articles/cerebrospinal-fluid-1">CSF</a> pressures, such as <a href="/articles/traumatic-brain-injury">trauma</a>, prior <a href="/articles/subarachnoid-haemorrhage">subarachnoid haemorrhage</a>, and <a href="/articles/leptomeningitis">meningitis</a>. This is sometimes confusingly referred to as secondary normal pressure hydrocephalus <sup>3</sup>. Most clinicians will assume that one is referring to idiopathic normal pressure hydrocephalus if no qualifier is used.</p><h4>Epidemiology</h4><p>The majority of cases are idiopathic. The incidence is much higher in elderly populations. Exact epidemiology is difficult to establish, as the diagnosis is often not made in nursing home patients for the following reasons: </p><ul>
  • -<li>approximately 20% of patients in nursing homes have gait impairment</li>
  • -<li>approximately 10% of these patients also have dementia</li>
  • -<li>15% have incontinence <sup>19</sup>
  • -</li>
  • +<p><strong>Normal pressure hydrocephalus</strong> remains a controversial entity with often ambiguous imaging findings. It is classically characterised by the triad of gait apraxia/ataxia, urinary incontinence, and dementia, although not all patients with the condition have all three <sup>31</sup>.</p><p>On imaging, it can be characterised both on CT and MRI by enlarged lateral and third ventricles out of proportion to the cortical sulcal enlargement.</p><p>This article is focussed on idiopathic cases. For a discussion of secondary causes of communicating hydrocephalus, please refer to the article <a href="/articles/hydrocephalus">hydrocephalus</a>.</p><h4>Terminology</h4><p>It is important to note that there are many causes of communicating hydrocephalus without elevated opening <a href="/articles/cerebrospinal-fluid-1">CSF</a> pressures, such as <a href="/articles/traumatic-brain-injury">trauma</a>, prior <a href="/articles/subarachnoid-haemorrhage">subarachnoid haemorrhage</a>, and <a href="/articles/leptomeningitis">meningitis</a>. This is sometimes confusingly referred to as secondary normal pressure hydrocephalus <sup>3</sup>. Most clinicians will assume that one is referring to idiopathic normal pressure hydrocephalus if no qualifier is used.</p><h4>Epidemiology</h4><p>The majority of cases are idiopathic. The incidence is much higher in elderly populations. Exact epidemiology is difficult to establish, as the diagnosis is often not made in nursing home patients for the following reasons: </p><ul>
  • +<li><p>approximately 20% of patients in nursing homes have gait impairment</p></li>
  • +<li><p>approximately 10% of these patients also have dementia</p></li>
  • +<li><p>15% have incontinence <sup>19</sup></p></li>
  • -<li>3.3 per 100,000 for people 50 to 59 years of age</li>
  • -<li>49.3 per 100,000 for people 60 to 69 years of age</li>
  • -<li>181.7 per 100,000 for people 70 to 79 years of age</li>
  • +<li><p>3.3 per 100,000 for people 50 to 59 years of age</p></li>
  • +<li><p>49.3 per 100,000 for people 60 to 69 years of age</p></li>
  • +<li><p>181.7 per 100,000 for people 70 to 79 years of age</p></li>
  • -<li>urinary incontinence</li>
  • -<li>deterioration in cognition (dementia)</li>
  • -<li>gait disturbances<ul><li>a classic neurological sign in NPH is magnetic gait, where the patients' feet appear to be magnetically attached to the floor</li></ul>
  • +<li><p>urinary incontinence</p></li>
  • +<li><p>deterioration in cognition (dementia)</p></li>
  • +<li>
  • +<p>gait disturbances</p>
  • +<ul><li><p>a classic neurological sign in normal pressure hydrocephalus is magnetic gait, where the patient's feet appear to be magnetically attached to the floor</p></li></ul>
  • -<a href="/articles/ventriculomegaly-1">ventriculomegaly</a><ul>
  • -<li>increased <a href="/articles/evans-index-2">Evans' index</a> &gt;0.3 <sup>1,</sup><sup>2,24,25</sup>
  • -</li>
  • -<li>widening of the temporal horns of the <a href="/articles/lateral-ventricle-1">lateral ventricles</a> &gt;6 mm <sup>2,25</sup>
  • -</li>
  • -<li>acute <a href="/articles/callosal-angle">callosal angle</a> <sup>1,24-27</sup>
  • -</li>
  • -<li>upward bowing of the <a href="/articles/corpus-callosum">corpus callosum</a> <sup>3,14</sup>
  • -</li>
  • +<p><a href="/articles/ventriculomegaly-1">ventriculomegaly</a></p>
  • +<ul>
  • +<li><p>increased <a href="/articles/evans-index-2">Evans index</a> &gt;0.3 <sup>1,2,24,25</sup></p></li>
  • +<li><p>widening of the temporal horns of the <a href="/articles/lateral-ventricle-1">lateral ventricles</a> &gt;6 mm <sup>2,25</sup></p></li>
  • +<li><p>acute <a href="/articles/callosal-angle">callosal angle</a> <sup>1,24-27</sup></p></li>
  • +<li><p>upward bowing of the <a href="/articles/corpus-callosum">corpus callosum</a> <sup>3,14</sup></p></li>
  • -<li>disproportionate changes in subarachnoid spaces<ul>
  • -<li>dilated <a href="/articles/sylvian-fissure">Sylvian fissures</a> <sup>2,</sup><sup>24,25,28</sup>
  • -</li>
  • -<li>tight high convexity (narrow sulci and subarachnoid spaces at the vertex and medial/parafalcine region) <sup>1,24,25,28</sup>
  • -</li>
  • -<a href="/articles/cingulate-sulcus-sign">cingulate sulcus sign</a>: posterior half of cingulate sulcus is narrower than the anterior half <sup>1,</sup><sup>17</sup>
  • -</li>
  • -<li>focal/isolated dilation of sulci over the medial surface or convexity (sometimes called transport sulci) <sup>1,24,28,29</sup>
  • -</li>
  • +<p>disproportionate changes in subarachnoid spaces</p>
  • +<ul>
  • +<li><p>dilated <a href="/articles/sylvian-fissure">Sylvian fissures</a> <sup>2,24,25,28</sup></p></li>
  • +<li><p>tight high convexity (narrow sulci and subarachnoid spaces at the vertex and medial/parafalcine region) <sup>1,24,25,28</sup></p></li>
  • +<li><p><a href="/articles/cingulate-sulcus-sign">cingulate sulcus sign</a>: posterior half of cingulate sulcus is narrower than the anterior half <sup>1,17</sup></p></li>
  • +<li><p>focal/isolated dilation of sulci over the medial surface or convexity (sometimes called transport sulci) <sup>1,24,28,29</sup></p></li>
  • -</ul><p>The combination of ventriculomegaly, Sylvian fissure widening, and crowding at the vertex has been termed <a href="/articles/disproportionately-enlarged-subarachnoid-space-hydrocephalus-desh">disproportionately enlarged subarachnoid space hydrocephalus (DESH)</a>, reflecting disproportionality between the superior and inferior CSF spaces <sup>1,23,27</sup>. The finding of DESH without neurologic symptoms has been termed <a href="/articles/disproportionately-enlarged-subarachnoid-space-hydrocephalus-desh">asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI (AVIM)</a> <sup>1</sup>. It is felt by some authors that AVIM is actually a pre-clinical form of iNPH <sup>30</sup>. </p><h6>Brain composition changes</h6><p>Periventricular hypodensity (on CT) or high T2-FLAIR signal (on MRI) is supportive of changes in brain water content seen in NPH, but these findings can also be seen with microvascular ischaemic changes or demyelination <sup>2,25</sup>.</p><h6>CSF flow changes</h6><p>Although prominent aqueductal flow void due to increased CSF velocity across the aqueduct is often seen in patients with NPH - best seen on T2 and PD spin-echo sequences <sup>14</sup> - it is no longer considered a useful sign, as in modern higher field strength MRI machines aqueductal CSF flow void is present in most of the normal subjects. Additionally, it is highly sequence-specific. </p><p>There is, however, a well-established correlation between higher flow velocities and the favourable outcome after ventriculoperitoneal (VP) shunting; hence, quantitative (rather than qualitative) methods have been developed which can be useful not only in patient selection for shunting but also in diagnosis and predicting prognosis <sup>12-15</sup></p><ul><li>
  • -<a href="/articles/csf-flow-studies">CSF flow studies</a> <sup>3</sup><ul>
  • -<li>increased aqueductal CSF stroke volume<ul><li>aqueductal CSF stroke volume is the average volume of CSF flowing through the cerebral aqueduct during both systole and diastole</li></ul>
  • -</li>
  • -<li>increased aqueductal peak velocity</li>
  • -<li>various publications have set various normal and abnormal ranges<ul>
  • -<li>flow rate of &gt;24.5 mL/min 95% specific for NPH <sup>9,11</sup>
  • -</li>
  • -<li>stroke volume of ≥42 μL shown in one paper to predict a good response to shunting <sup>10</sup>, however, a more recent paper has cast serious doubt on the usefulness of aqueduct stroke volume in patient selection for VP shunting <sup>21</sup>
  • -</li>
  • -<li>stroke volume upper limit is now suggested to be variable between institutions due to intrinsic scanner differences; thus each centre should obtain their own "normal values", with the upper limit being suggested as two times the normal value <sup>16</sup>
  • -</li>
  • +</ul><p>The combination of ventriculomegaly, Sylvian fissure widening, and crowding at the vertex has been termed <a href="/articles/disproportionately-enlarged-subarachnoid-space-hydrocephalus-desh">disproportionately enlarged subarachnoid space hydrocephalus (DESH)</a>, reflecting disproportionality between the superior and inferior CSF spaces <sup>1,23,27</sup>. The finding of disproportionately enlarged subarachnoid space hydrocephalus without neurologic symptoms has been termed <a href="/articles/disproportionately-enlarged-subarachnoid-space-hydrocephalus-desh">asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI (AVIM)</a> <sup>1</sup>. It is felt by some authors that AVIM is actually a pre-clinical form of idiopathic normal pressure hydrocephalus <sup>30</sup>. </p><h6>Brain composition changes</h6><p>Periventricular hypodensity (on CT) or high T2-FLAIR signal (on MRI) is supportive of changes in brain water content seen in normal pressure hydrocephalus, but these findings can also be seen with microvascular ischaemic changes or demyelination <sup>2,25</sup>.</p><h6>CSF flow changes</h6><p>Although prominent aqueductal flow void due to increased CSF velocity across the aqueduct is often seen in patients with normal pressure hydrocephalus - best seen on T2 and PD spin-echo sequences <sup>14</sup> - it is no longer considered a useful sign, as in modern higher field strength MRI machines aqueductal CSF flow void is present in most of the normal subjects. Additionally, it is highly sequence-specific. </p><p>There is, however, a well-established correlation between higher flow velocities and the favourable outcome after ventriculoperitoneal (VP) shunting; hence, quantitative (rather than qualitative) methods have been developed which can be useful not only in patient selection for shunting but also in diagnosis and predicting prognosis <sup>12-15</sup></p><ul><li>
  • +<p><a href="/articles/csf-flow-studies">CSF flow studies</a> <sup>3</sup></p>
  • +<ul>
  • +<li>
  • +<p>increased aqueductal CSF stroke volume</p>
  • +<ul><li><p>aqueductal CSF stroke volume is the average volume of CSF flowing through the cerebral aqueduct during both systole and diastole</p></li></ul>
  • +</li>
  • +<li><p>increased aqueductal peak velocity</p></li>
  • +<li>
  • +<p>various publications have set various normal and abnormal ranges</p>
  • +<ul>
  • +<li><p>flow rate of &gt;24.5 mL/min 95% specific for normal pressure hydrocephalus <sup>9,11</sup></p></li>
  • +<li><p>stroke volume of ≥42 μL shown in one paper to predict a good response to shunting <sup>10</sup>, however, a more recent paper has cast serious doubt on the usefulness of aqueduct stroke volume in patient selection for VP shunting <sup>21</sup></p></li>
  • +<li><p>stroke volume upper limit is now suggested to be variable between institutions due to intrinsic scanner differences; thus each centre should obtain their own "normal values", with the upper limit being suggested as two times the normal value <sup>16</sup></p></li>
  • -<li>studies have shown that aqueductal stroke volume decreases later in the disease process despite clinical progression<ul><li>this has been theorised to be caused by cerebral atrophy, which indicates that the patient is unlikely to respond to shunt surgery <sup>18</sup>
  • -</li></ul>
  • +<li>
  • +<p>studies have shown that aqueductal stroke volume decreases later in the disease process despite clinical progression</p>
  • +<ul><li><p>this has been theorised to be caused by cerebral atrophy, which indicates that the patient is unlikely to respond to shunt surgery <sup>18</sup></p></li></ul>
  • -</li></ul><h6>MR spectroscopy</h6><p>MRS has not been shown to have any added value for differentiating idiopathic NPH from other types of dementia, nor does it help in patient selection for VP shunting <sup>22</sup>.</p><h5>Nuclear medicine</h5><p>Nuclear medicine is less important in diagnosing NPH. Some of the features described are <sup>13</sup>:</p><ul>
  • -<li>early detection of the radiotracer into lateral ventricles giving a heart-shaped appearance of lateral ventricles rather than a normal trident pattern</li>
  • -<li>persistence of radiopharmaceutical beyond 24-48 hours due to impaired absorption</li>
  • -<li>radiotracer does not extend to the superior aspect of convexities of lateral ventricles</li>
  • -<li>retrograde CSF flow into lateral ventricles</li>
  • +</li></ul><h6>MR spectroscopy</h6><p>MR spectroscopy has not been shown to have any added value for differentiating idiopathic normal pressure hydrocephalus from other types of dementia, nor does it help in patient selection for VP shunting <sup>22</sup>.</p><h5>Nuclear medicine</h5><p>Nuclear medicine is less important in diagnosing normal pressure hydrocephalus. Some of the features described are <sup>13</sup>:</p><ul>
  • +<li><p>early detection of the radiotracer into lateral ventricles giving a heart-shaped appearance of lateral ventricles rather than a normal trident pattern</p></li>
  • +<li><p>persistence of radiopharmaceutical beyond 24-48 hours due to impaired absorption</p></li>
  • +<li><p>radiotracer does not extend to the superior aspect of convexities of lateral ventricles</p></li>
  • +<li><p>retrograde CSF flow into lateral ventricles</p></li>
  • -<li>short duration of presurgical symptoms (less than 6 months)</li>
  • -<li>onset of gait disturbance before dementia</li>
  • -<li>temporary symptom relief from a CSF tap test (removal of 40 mL of CSF via lumbar puncture)</li>
  • -<li>absence of significant cerebral vascular disease</li>
  • -<li>presence of an aqueductal flow void on T2 imaging <sup>10,14</sup>
  • -</li>
  • +<li><p>short duration of presurgical symptoms (less than 6 months)</p></li>
  • +<li><p>onset of gait disturbance before dementia</p></li>
  • +<li><p>temporary symptom relief from a CSF tap test (removal of 40 mL of CSF via lumbar puncture)</p></li>
  • +<li><p>absence of significant cerebral vascular disease</p></li>
  • +<li><p>presence of an aqueductal flow void on T2 imaging <sup>10,14</sup></p></li>
  • -<li>normal ageing brain</li>
  • -<li>
  • -<a href="/articles/alzheimer-disease">Alzheimer dementia</a>: may show greater dilatation of perihippocampal fissures <sup>2</sup>
  • -</li>
  • -<li>
  • -<a href="/articles/obstructive-hydrocephalus">obstructive hydrocephalus</a>: due to mass lesion (e.g. pineal region, tectal plate, midbrain)</li>
  • -<li>
  • -<a href="/articles/dementia-with-lewy-bodies">Lewy body dementia</a>: visual hallucinations and delusions are more prominent</li>
  • -<li>
  • -<a href="/articles/parkinson-disease-1">Parkinson disease</a>: unilateral symptoms are important</li>
  • -<li>
  • -<a href="/articles/hiv-associated-dementia-1">AIDS-dementia complex</a>: positive HIV serology</li>
  • +<li><p>normal ageing brain</p></li>
  • +<li><p><a href="/articles/alzheimer-disease">Alzheimer dementia</a>: may show greater dilatation of perihippocampal fissures <sup>2</sup></p></li>
  • +<li><p><a href="/articles/obstructive-hydrocephalus">obstructive hydrocephalus</a>: due to mass lesion (e.g. pineal region, tectal plate, midbrain)</p></li>
  • +<li><p><a href="/articles/dementia-with-lewy-bodies">Lewy body dementia</a>: visual hallucinations and delusions are more prominent</p></li>
  • +<li><p><a href="/articles/parkinson-disease-1">Parkinson disease</a>: unilateral symptoms are important</p></li>
  • +<li><p><a href="/articles/hiv-associated-dementia-1">AIDS-dementia complex</a>: positive HIV serology</p></li>
  • -<li>
  • -<a title="Normal pressure hydrocephalus (mnenomic)" href="/articles/normal-pressure-hydrocephalus-mnenomic">n</a><a href="/articles/normal-pressure-hydrocephalus-mnenomic">ormal pressure hydrocephalus (mnenomic)</a>
  • -</li>
  • -<li><a href="/articles/idiopathic-intracranial-hypertension">idiopathic intracranial hypertension</a></li>
  • +<li><p><a href="/articles/normal-pressure-hydrocephalus-mnenomic" title="Normal pressure hydrocephalus (mnenomic)">n</a><a href="/articles/normal-pressure-hydrocephalus-mnenomic">ormal pressure hydrocephalus (mnenomic)</a></p></li>
  • +<li><p><a href="/articles/idiopathic-intracranial-hypertension">idiopathic intracranial hypertension</a></p></li>

References changed:

  • 1. Mori E, Ishikawa M, Kato T et al. Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus: Second Edition. Neurol Med Chir (Tokyo). 2012;52(11):775-809. <a href="https://doi.org/10.2176/nmc.52.775">doi:10.2176/nmc.52.775</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/23183074">Pubmed</a>
  • 2. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black P. Diagnosing Idiopathic Normal-Pressure Hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4-16; discussion ii-v. <a href="https://doi.org/10.1227/01.neu.0000168185.29659.c5">doi:10.1227/01.neu.0000168185.29659.c5</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/16160425">Pubmed</a>
  • 3. Hurley R, Bradley W, Latifi H, Taber K. Normal Pressure Hydrocephalus: Significance of MRI in a Potentially Treatable Dementia. J Neuropsychiatry Clin Neurosci. 1999;11(3):297-300. <a href="https://doi.org/10.1176/jnp.11.3.297">doi:10.1176/jnp.11.3.297</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/10440004">Pubmed</a>
  • 4. Bradley W. Normal Pressure Hydrocephalus: New Concepts on Etiology and Diagnosis. AJNR Am J Neuroradiol. 2000;21(9):1586-90. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174878">PMC8174878</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/11039335">Pubmed</a>
  • 5. Bradley W, Scalzo D, Queralt J, Nitz W, Atkinson D, Wong P. Normal-Pressure Hydrocephalus: Evaluation with Cerebrospinal Fluid Flow Measurements at MR Imaging. Radiology. 1996;198(2):523-9. <a href="https://doi.org/10.1148/radiology.198.2.8596861">doi:10.1148/radiology.198.2.8596861</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/8596861">Pubmed</a>
  • 6. Conn H & Lobo F. What Do Physicians Know About Normal Pressure Hydrocephalus and when Did They Know It? A Survey of 284 Physicians. Yale J Biol Med. 2008;81(1):19-29. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442723">PMC2442723</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/18604308">Pubmed</a>
  • 7. Hakim S & Adams R. The Special Clinical Problem of Symptomatic Hydrocephalus with Normal Cerebrospinal Fluid Pressure. Observations on Cerebrospinal Fluid Hydrodynamics. J Neurol Sci. 1965;2(4):307-27. <a href="https://doi.org/10.1016/0022-510x(65)90016-x">doi:10.1016/0022-510x(65)90016-x</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/5889177">Pubmed</a>
  • 8. Ivkovic M, Liu B, Ahmed F et al. Differential Diagnosis of Normal Pressure Hydrocephalus by MRI Mean Diffusivity Histogram Analysis. AJNR Am J Neuroradiol. 2013;34(6):1168-74. <a href="https://doi.org/10.3174/ajnr.A3368">doi:10.3174/ajnr.A3368</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/23257611">Pubmed</a>
  • 9. Al-Zain F, Rademacher G, Lemcke J, Mutze J, Meier U. [Idiopathic Normal-Pressure Hydrocephalus. Flow Measurement of Cerebrospinal Fluid Using Phase Contrast MRI and Its Diagnostics Importance]. Nervenarzt. 2007;78(2):181-7. <a href="https://doi.org/10.1007/s00115-006-2231-7">doi:10.1007/s00115-006-2231-7</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/17225144">Pubmed</a>
  • 10. Bradley W, Scalzo D, Queralt J, Nitz W, Atkinson D, Wong P. Normal-Pressure Hydrocephalus: Evaluation with Cerebrospinal Fluid Flow Measurements at MR Imaging. Radiology. 1996;198(2):523-9. <a href="https://doi.org/10.1148/radiology.198.2.8596861">doi:10.1148/radiology.198.2.8596861</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/8596861">Pubmed</a>
  • 11. Geoffrey Manley, Claude Hemphill, Shirley Stiver. Intracranial Pressure and Brain Monitoring XIII. (2009) ISBN: 9783211855782 - <a href="http://books.google.com/books?vid=ISBN9783211855782">Google Books</a>
  • 12. Krauss J, Regel J, Vach W, Jüngling F, Droste D, Wakhloo A. Flow Void of Cerebrospinal Fluid in Idiopathic Normal Pressure Hydrocephalus of the Elderly: Can It Predict Outcome After Shunting? Neurosurgery. 1997;40(1):67-73; discussion 73. <a href="https://doi.org/10.1097/00006123-199701000-00015">doi:10.1097/00006123-199701000-00015</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/8971826">Pubmed</a>
  • 13. Martin P. Sandler. Diagnostic Nuclear Medicine. (2003) ISBN: 9780781732529 - <a href="http://books.google.com/books?vid=ISBN9780781732529">Google Books</a>
  • 14. Hayhow B, Begic F, Evans A, Velakoulis D, Gaillard F. Communicating Hydrocephalus with Reversible Cognitive Impairment. Aust N Z J Psychiatry. 2014;48(4):379-80. <a href="https://doi.org/10.1177/0004867413511547">doi:10.1177/0004867413511547</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/24589982">Pubmed</a>
  • 15. Bradley W. Cerebrospinal Fluid Dynamics and Shunt Responsiveness in Patients with Normal-Pressure Hydrocephalus. Mayo Clin Proc. 2002;77(6):507-8. <a href="https://doi.org/10.4065/77.6.507">doi:10.4065/77.6.507</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/12059118">Pubmed</a>
  • 16. Bradley W. Idiopathic Normal Pressure Hydrocephalus: New Findings and Thoughts on Etiology. AJNR Am J Neuroradiol. 2008;29(1):1-3. <a href="https://doi.org/10.3174/ajnr.A0867">doi:10.3174/ajnr.A0867</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/18192342">Pubmed</a>
  • 17. Adachi M, Kawanami T, Ohshima F, Kato T. Upper Midbrain Profile Sign and Cingulate Sulcus Sign: MRI Findings on Sagittal Images in Idiopathic Normal-Pressure Hydrocephalus, Alzheimer's Disease, and Progressive Supranuclear Palsy. Radiat Med. 2006;24(8):568-72. <a href="https://doi.org/10.1007/s11604-006-0074-6">doi:10.1007/s11604-006-0074-6</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/17041793">Pubmed</a>
  • 18. Scollato A, Tenenbaum R, Bahl G, Celerini M, Salani B, Di Lorenzo N. Changes in Aqueductal CSF Stroke Volume and Progression of Symptoms in Patients with Unshunted Idiopathic Normal Pressure Hydrocephalus. AJNR Am J Neuroradiol. 2008;29(1):192-7. <a href="https://doi.org/10.3174/ajnr.A0785">doi:10.3174/ajnr.A0785</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/17925364">Pubmed</a>
  • 19. Shprecher D, Schwalb J, Kurlan R. Normal Pressure Hydrocephalus: Diagnosis and Treatment. Curr Neurol Neurosci Rep. 2008;8(5):371-6. <a href="https://doi.org/10.1007/s11910-008-0058-2">doi:10.1007/s11910-008-0058-2</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/18713572">Pubmed</a>
  • 20. Brean A & Eide P. Prevalence of Probable Idiopathic Normal Pressure Hydrocephalus in a Norwegian Population. Acta Neurol Scand. 2008;118(1):48-53. <a href="https://doi.org/10.1111/j.1600-0404.2007.00982.x">doi:10.1111/j.1600-0404.2007.00982.x</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/18205881">Pubmed</a>
  • 21. Ringstad G, Emblem K, Geier O, Alperin N, Eide P. Aqueductal Stroke Volume: Comparisons with Intracranial Pressure Scores in Idiopathic Normal Pressure Hydrocephalus. AJNR Am J Neuroradiol. 2015;36(9):1623-30. <a href="https://doi.org/10.3174/ajnr.A4340">doi:10.3174/ajnr.A4340</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/25977480">Pubmed</a>
  • 22. Algin O, Hakyemez B, Parlak M. Proton MR Spectroscopy and White Matter Hyperintensities in Idiopathic Normal Pressure Hydrocephalus and Other Dementias. Br J Radiol. 2010;83(993):747-52. <a href="https://doi.org/10.1259/bjr/43131041">doi:10.1259/bjr/43131041</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20647518">Pubmed</a>
  • 23. Hashimoto M, Ishikawa M, Mori E, Kuwana N, Kuwana N. Diagnosis of Idiopathic Normal Pressure Hydrocephalus is Supported by MRI-Based Scheme: A Prospective Cohort Study. Cerebrospinal Fluid Res. 2010;7(1):18. <a href="https://doi.org/10.1186/1743-8454-7-18">doi:10.1186/1743-8454-7-18</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/21040519">Pubmed</a>
  • 24. Shinoda N, Hirai O, Hori S et al. Utility of MRI-Based Disproportionately Enlarged Subarachnoid Space Hydrocephalus Scoring for Predicting Prognosis After Surgery for Idiopathic Normal Pressure Hydrocephalus: Clinical Research. J Neurosurg. 2017;127(6):1436-42. <a href="https://doi.org/10.3171/2016.9.JNS161080">doi:10.3171/2016.9.JNS161080</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/28156249">Pubmed</a>
  • 25. Kockum K, Lilja-Lund O, Larsson E et al. The Idiopathic Normal-Pressure Hydrocephalus Radscale: A Radiological Scale for Structured Evaluation. Eur J Neurol. 2018;25(3):569-76. <a href="https://doi.org/10.1111/ene.13555">doi:10.1111/ene.13555</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29281156">Pubmed</a>
  • 26. Ishii K, Kanda T, Harada A et al. Clinical Impact of the Callosal Angle in the Diagnosis of Idiopathic Normal Pressure Hydrocephalus. Eur Radiol. 2008;18(11):2678-83. <a href="https://doi.org/10.1007/s00330-008-1044-4">doi:10.1007/s00330-008-1044-4</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/18500524">Pubmed</a>
  • 27. Virhammar J, Laurell K, Cesarini K, Larsson E. Preoperative Prognostic Value of MRI Findings in 108 Patients with Idiopathic Normal Pressure Hydrocephalus. AJNR Am J Neuroradiol. 2014;35(12):2311-8. <a href="https://doi.org/10.3174/ajnr.A4046">doi:10.3174/ajnr.A4046</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/25012669">Pubmed</a>
  • 28. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF Spaces in Idiopathic Normal Pressure Hydrocephalus: Morphology and Volumetry. AJNR Am J Neuroradiol. 1998;19(7):1277-84. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8332236">PMC8332236</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/9726467">Pubmed</a>
  • 29. Holodny A, George A, de Leon M, Golomb J, Kalnin A, Cooper P. Focal Dilation and Paradoxical Collapse of Cortical Fissures and Sulci in Patients with Normal-Pressure Hydrocephalus. J Neurosurg. 1998;89(5):742-7. <a href="https://doi.org/10.3171/jns.1998.89.5.0742">doi:10.3171/jns.1998.89.5.0742</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/9817411">Pubmed</a>
  • 30. Iseki C, Kawanami T, Nagasawa H et al. Asymptomatic Ventriculomegaly with Features of Idiopathic Normal Pressure Hydrocephalus on MRI (AVIM) in the Elderly: A Prospective Study in a Japanese Population. J Neurol Sci. 2009;277(1-2):54-7. <a href="https://doi.org/10.1016/j.jns.2008.10.004">doi:10.1016/j.jns.2008.10.004</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/18990411">Pubmed</a>
  • 31. J. Larry Jameson, Dennis L. Kasper, Dan Louis Longo et al. Harrison's Principles of Internal Medicine: Cardinal Manifestations and Presentation of Diseases. (2018) ISBN: 9781259834806 - <a href="http://books.google.com/books?vid=ISBN9781259834806">Google Books</a>
  • 1. Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, Nakajima M, Hashimoto M, Kuriyama N, Tokuda T, Ishii K, Kaijima M, Hirata Y, Saito M, Arai H. Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. (2012) Neurologia medico-chirurgica. 52 (11): 775-809. <a href="https://www.ncbi.nlm.nih.gov/pubmed/23183074">Pubmed</a> <span class="ref_v4"></span>
  • 2. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. (2005) Neurosurgery. 57 (3 Suppl): S4-16; discussion ii-v. <a href="https://www.ncbi.nlm.nih.gov/pubmed/16160425">Pubmed</a> <span class="ref_v4"></span>
  • 3. Hurley RA, Bradley WG, Latifi HT et-al. Normal pressure hydrocephalus: significance of MRI in a potentially treatable dementia. J Neuropsychiatry Clin Neurosci. 1999;11 (3): 297-300. <a href="http://neuro.psychiatryonline.org/cgi/content/full/11/3/297">J Neuropsychiatry Clin Neurosci (full text)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/10440004">Pubmed citation</a><div class="ref_v2"></div>
  • 4. Bradley WG. Normal pressure hydrocephalus: new concepts on etiology and diagnosis. AJNR Am J Neuroradiol. 2000;21 (9): 1586-90. <a href=http://www.ajnr.org/content/21/9/1586.full">AJNR Am J Neuroradiol (full text)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/11039335">Pubmed citation</a><span class="ref_v3"></span>
  • 5. Bradley WG, Scalzo D, Queralt J et-al. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996;198 (2): 523-9. <a href=http://radiology.rsna.org/content/198/2/523.abstract">Radiology (abstract)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/8596861">Pubmed citation</a><span class="ref_v3"></span>
  • 6. Conn HO, Lobo FM. What do physicians know about normal pressure hydrocephalus and when did they know it? A survey of 284 physicians. Yale J Biol Med. 2008;81 (1): 19-29. <a href=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442723">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/18604308">Pubmed citation</a><span class="ref_v3"></span>
  • 7. Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J. Neurol. Sci. 1968;2 (4): 307-27. <a href=http://www.ncbi.nlm.nih.gov/pubmed/5889177">Pubmed citation</a><span class="ref_v3"></span>
  • 8. Ivkovic M, Liu B, Ahmed F et-al. Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis. AJNR Am J Neuroradiol. 2013;34 (6): 1168-74. <a href=http://www.ajnr.org/content/34/6/1168.full">AJNR Am J Neuroradiol (full text)</a> - <a href="http://dx.doi.org/10.3174/ajnr.A3368">doi:10.3174/ajnr.A3368</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/23257611">Pubmed citation</a><span class="ref_v3"></span>
  • 9. Al-Zain FT, Rademacher G, Lemcke J et-al. [Idiopathic normal-pressure hydrocephalus. Flow measurement of cerebrospinal fluid using phase contrast MRI and its diagnostics importance]. Nervenarzt. 2007;78 (2): 181-7. <a href=http://dx.doi.org/10.1007/s00115-006-2231-7">doi:10.1007/s00115-006-2231-7</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/17225144">Pubmed citation</a><span class="auto"></span>
  • 10. Bradley WG, Scalzo D, Queralt J et-al. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996;198 (2): 523-9. <a href=http://radiology.rsna.org/content/198/2/523.abstract">Radiology (abstract)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/8596861">Pubmed citation</a><span class="ref_v3"></span>
  • 11. Manley GT, Hemphill C, Stiver S. Intracranial Pressure and Brain Monitoring XIII. Springer. (2009) ISBN:3211855785. <a href=http://books.google.com/books?vid=ISBN3211855785">Read it at Google Books</a> - <a href="http://www.amazon.com/gp/product/3211855785">Find it at Amazon</a><span class="auto"></span>
  • 12. Krauss JK, Regel JP, Vach W et-al. Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting?. Neurosurgery. 1997;40 (1): 67-73. <a href=http://www.ncbi.nlm.nih.gov/pubmed/8971826">Pubmed citation</a><span class="auto"></span>
  • 13. Sandler MP, Coleman RE, Patton JA et-al. Diagnostic Nuclear Medicine. Lippincott Williams & Wilkins. (2003) ISBN:0781732522. <a href=http://books.google.com/books?vid=ISBN0781732522">Read it at Google Books</a> - <a href="http://www.amazon.com/gp/product/0781732522">Find it at Amazon</a><span class="auto"></span>
  • 14. Hayhow B, Begic F, Evans A et-al. Communicating hydrocephalus with reversible cognitive impairment. Aust N Z J Psychiatry. . <a href="http://dx.doi.org/10.1177/0004867413511547">doi:10.1177/0004867413511547</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/24589982">Pubmed citation</a><span class="auto"></span>
  • 15. Bradley WG. Cerebrospinal fluid dynamics and shunt responsiveness in patients with normal-pressure hydrocephalus. Mayo Clin. Proc. 2002;77 (6): 507-8. <a href=http://dx.doi.org/10.4065/77.6.507">doi:10.4065/77.6.507</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/12059118">Pubmed citation</a><span class="auto"></span>
  • 16. Bradley WG. Idiopathic normal pressure hydrocephalus: new findings and thoughts on etiology. AJNR Am J Neuroradiol. 2008;29 (1): 1-3. <a href=http://dx.doi.org/10.3174/ajnr.A0867">doi:10.3174/ajnr.A0867</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/18192342">Pubmed citation</a><span class="auto"></span>
  • 17. Adachi M, Kawanami T, Ohshima F et-al. Upper midbrain profile sign and cingulate sulcus sign: MRI findings on sagittal images in idiopathic normal-pressure hydrocephalus, Alzheimer's disease, and progressive supranuclear palsy. Radiat Med. 2006;24 (8): 568-72. <a href=http://dx.doi.org/10.1007/s11604-006-0074-6">doi:10.1007/s11604-006-0074-6</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/17041793">Pubmed citation</a><span class="auto"></span>
  • 18. Scollato A, Tenenbaum R, Bahl G et-al. Changes in aqueductal CSF stroke volume and progression of symptoms in patients with unshunted idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2008;29 (1): 192-7. <a href=http://dx.doi.org/10.3174/ajnr.A0785">doi:10.3174/ajnr.A0785</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/17925364">Pubmed citation</a><span class="auto"></span>
  • 19. Shprecher D, Schwalb J, Kurlan R. Normal pressure hydrocephalus: diagnosis and treatment. Curr Neurol Neurosci Rep. 2008;8 (5): 371-6. <a href=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674287">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/18713572">Pubmed citation</a><span class="auto"></span>
  • 20. Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus in a Norwegian population. Acta Neurol. Scand. 2008;118 (1): 48-53. <a href=http://dx.doi.org/10.1111/j.1600-0404.2007.00982.x">doi:10.1111/j.1600-0404.2007.00982.x</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/18205881">Pubmed citation</a><span class="auto"></span>
  • 21. Ringstad G, Emblem KE, Geier O, Alperin N, Eide PK. Aqueductal Stroke Volume: Comparisons with Intracranial Pressure Scores in Idiopathic Normal Pressure Hydrocephalus. AJNR. American journal of neuroradiology. 36 (9): 1623-30. <a href=https://doi.org/10.3174/ajnr.A4340">doi:10.3174/ajnr.A4340</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/25977480">Pubmed</a> <span class="ref_v4"></span>
  • 22. Algin O, Hakyemez B, Parlak M. Proton MR spectroscopy and white matter hyperintensities in idiopathic normal pressure hydrocephalus and other dementias. The British journal of radiology. 83 (993): 747-52. <a href=https://doi.org/10.1259/bjr/43131041">doi:10.1259/bjr/43131041</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20647518">Pubmed</a> <span class="ref_v4"></span>
  • 23. Hashimoto M, Ishikawa M, Mori E, Kuwana N. Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. (2010) Cerebrospinal fluid research. 7: 18. <a href="https://doi.org/10.1186/1743-8454-7-18">doi:10.1186/1743-8454-7-18</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/21040519">Pubmed</a> <span class="ref_v4"></span>
  • 24. Shinoda N, Hirai O, Hori S, Mikami K, Bando T, Shimo D, Kuroyama T, Kuramoto Y, Matsumoto M, Ueno Y. Utility of MRI-based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: clinical research. (2017) Journal of neurosurgery. 127 (6): 1436-1442. <a href="https://doi.org/10.3171/2016.9.JNS161080">doi:10.3171/2016.9.JNS161080</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/28156249">Pubmed</a> <span class="ref_v4"></span>
  • 25. Kockum K, Lilja-Lund O, Larsson EM, Rosell M, Söderström L, Virhammar J, Laurell K. The idiopathic normal-pressure hydrocephalus Radscale: a radiological scale for structured evaluation. (2018) European journal of neurology. 25 (3): 569-576. <a href="https://doi.org/10.1111/ene.13555">doi:10.1111/ene.13555</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29281156">Pubmed</a> <span class="ref_v4"></span>
  • 26. Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada K, Ohkawa S, Uemura T, Yoshikawa T, Mori E. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. (2008) European radiology. 18 (11): 2678-83. <a href="https://doi.org/10.1007/s00330-008-1044-4">doi:10.1007/s00330-008-1044-4</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/18500524">Pubmed</a> <span class="ref_v4"></span>
  • 27. Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. (2014) AJNR. American journal of neuroradiology. 35 (12): 2311-8. <a href="https://doi.org/10.3174/ajnr.A4046">doi:10.3174/ajnr.A4046</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/25012669">Pubmed</a> <span class="ref_v4"></span>
  • 28. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. (1998) AJNR. American journal of neuroradiology. 19 (7): 1277-84. <a href="https://www.ncbi.nlm.nih.gov/pubmed/9726467">Pubmed</a> <span class="ref_v4"></span>
  • 29. Holodny AI, George AE, de Leon MJ, Golomb J, Kalnin AJ, Cooper PR. Focal dilation and paradoxical collapse of cortical fissures and sulci in patients with normal-pressure hydrocephalus. (1998) Journal of neurosurgery. 89 (5): 742-7. <a href="https://doi.org/10.3171/jns.1998.89.5.0742">doi:10.3171/jns.1998.89.5.0742</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/9817411">Pubmed</a> <span class="ref_v4"></span>
  • 30. Iseki C, Kawanami T, Nagasawa H, Wada M, Koyama S, Kikuchi K, Arawaka S, Kurita K, Daimon M, Mori E, Kato T. Asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI (AVIM) in the elderly: a prospective study in a Japanese population. (2009) Journal of the neurological sciences. 277 (1-2): 54-7. <a href="https://doi.org/10.1016/j.jns.2008.10.004">doi:10.1016/j.jns.2008.10.004</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/18990411">Pubmed</a> <span class="ref_v4"></span>
  • 31. J. Larry Jameson, Dennis L. Kasper, Dan Louis Longo, et al. Harrison's Principles of Internal Medicine: Cardinal manifestations and presentation of diseases. (2020) <a href="https://books.google.co.uk/books?vid=ISBN9781259834806">ISBN: 9781259834806</a><span class="ref_v4"></span> Pg. 3112

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.