Saccular cerebral aneurysm

Changed by Craig Hacking, 11 Jun 2015

Updates to Article Attributes

Body was changed:

Saccular cerebral aneurysms, also known as berry aneurysms, are intracranial aneurysms with a characteristic rounded shape and account for the vast majority of intracranial aneurysms. They are also the most common cause of non-traumatic subarachnoid haemorrhage.

Epidemiology

Prevalence of saccular cerebral aneurysms in the asymptomatic general population has been reported over a wide range (0.2-8.9%) when examined angiographically, and in 15-30% of these patients, multiple aneurysms are found 4.

A familial tendency to aneurysms is also well recognised, with patients who have more than one first degree relative affected, having a 17-44% chance of themselves having an aneurysm 4.

Pathology

Grossly aneurysms are rounded lobulated focal outpouchings which usually arise at the arterial bifurcations, it may arise from the lateral wall.

Most of the intracranial aneurysms are true aneurysm. The aneurysmal pouch is composed of thickened hyalinised intima with the muscular wall and internal elastic lamina being absent as the normal muscularis and elastic lamina terminate at the neck of the aneurysm. As the aneurysm grows it may become irregular in outline, and may have mural thrombus. Typically rupture occurs from the dome 4.

Associations

Numerous associations have been identified, most relating to abnormal connective tissue. Associations include:

Location

Cerebral aneurysms typically occur at branch points of larger vessels but can occur at the origin of small perforators which may not be seen on imaging. Approximately 90% of such aneurysms arise from the anterior circulation 4.

  • anterior circulation: ~90%
    • ACA/ACoA complex: ~30-40%
    • supraclinoid ICA and ICA/PCoA junction: ~30%
    • MCA (M1/M2 junction) bi/trifurcation: ~20-30%
  • posterior circulation: ~10%
    • basilar tip
    • SCA
    • PICA

10-15% are multiple.

Radiographic features

Berry aneurysms can be imaged in a variety of methods:

  1. CT angiography (CTA)
  2. MR angiography (MRA)
  3. digital subtraction (catheter) angiography (DSA)

Each of these confers certain advantages and disadvantages, although in general digital subtraction catheter angiography, especially with 3D acquisitions, is considered the gold standard in most institutions.

CT

The appearance depends upon presence of thrombosis within the aneurysm.

  • aneurysm appears as well defined round, slightly hyperattenuated lesions
  • calcification can be present
  • post contrast
    • patent aneurysm: bright and uniform enhancement
    • thrombosed aneurysm: rim enhancement due to filling defect
MRI

On MRI also the patent and thrombosed aneurysm display different imaging features:

  • T1
    • most of the patent aneurysm appears as flow void, or they may show heterogeneous signal intensity.
    • in thrombosed aneurysm appearance depends on the age of clot within the lumen.
  • T2
    • typically hypointense
    • laminated thrombus may show a hyperintense rim
DSA

It has been reported more sensitivity in 3D DSA over 2D DSA when regarding the detection of small aneurysms 6. Attention must be given when measuring the aneurysm neck size as it can be overestimated by the 3D reconstructions. 

Required description on a radiology report

Regardless of the modality used, a number of features need to be assessed to allow a decision in relation to treatment to be made.

  • size: ideally 3 axis maximum size measurements

  • neck: maximal width of the neck of the aneurysm
  • shape and lobulation
  • orientation: the direction in which the aneurysm points is often important in both endovascular and surgical planning
  • any smaller branches in the vicinity of the aneurysm
  • any branch taking off from the aneurysm
  • presence of other aneurysms
  • relevant arterial variant anatomy (that may complicate or exclude endovascular treatment)

Treatment and prognosis

Treatment of large or symptomatic aneurysms should be considered, with either endovascular coiling or surgical clipping. 

Management of small aneurysms is controversial. Less than 7mm in maximal diameter aneurysms are statistically unlikely to rupture, however due to their prevalence anyone working in the area has seen numerous patients with small aneurysms which have ruptured resulting in subarachnoid haemorrhage, often with devastating consequences.

5 year cumulative risk of rupture of anterior circulation aneurysms 5:

  • <7 mm: 0%
  • 7-12 mm: 2.6%
  • 13-24 mm: 14.5%
  • >25 mm: 40%

5 year cumulative risk of rupture of posterior circulation aneurysms 5:

  • <7 mm: 2.5%
  • 7-12 mm: 14.5%
  • 13-24 mm: 18.4%
  • >25 mm: 50%

As such management will vary according to local experience, the location and appearance of the aneurysm, patient demographics etc.

Differential diagnosis

When the abnormality has been confirmed to be vascular, the differential includes:

See also

  • -</ul><h4>Radiographic features</h4><p>Berry aneurysms can be imaged in a variety of methods:</p><ol>
  • +</ul><p>10-15% are multiple.</p><h4>Radiographic features</h4><p>Berry aneurysms can be imaged in a variety of methods:</p><ol>
  • -<li><p>size: ideally 3 axis maximum size measurements</p></li>
  • +<li>size: ideally 3 axis maximum size measurements</li>
  • +<li>presence of other aneurysms</li>
  • +<li>relevant arterial variant anatomy (that may complicate or exclude endovascular treatment)</li>
  • +<li>variant arterial anatomy (see imaging differential diagnosis case)</li>

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.